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CHAPTER 1

Introduction

Symmetry plays a fundamental role in physics. One perspective views symmetry as the property of remaining
unchanged under a transformation. A familiar example of this is the rotational symmetry displayed by a
sphere. This is an example of a continuous symmetry, as opposed to a discrete symmetry. The appreciation of
continuous symmetries grew after a result of Noether [Noe18], which roughly says that continuous symmetries
correspond to conserved quantities. For example, rotational symmetry corresponds to the conservation of
angular momentum [Gri13]. Mathematically, continuous symmetries are described through the action of Lie
groups on objects. In the case of the sphere, its rotational symmetry is captured by the special orthogonal
group SO(3).

Modern physics mainly deals with two types of symmetry: spacetime symmetries and internal symmetries.
Until 1967, there was an effort to combine the two into a single unifying symmetry. However, this task was
deemed impossible following the work of Coleman and Mandula [Col67]. In essence, they showed that there
is no non-trivial way to combine the two symmetries. However, this only applies to bosonic symmetries (those
linked to force-carrying particles). An extension introduced by Haag, Łopuszański, and Sohnius [HŁS75] led
to the incorporation of a new fermionic symmetry, establishing a relationship between bosons (force-carrying
particles) and fermions (matter-carrying particles).

The introduction of this fermionic symmetry lead to the theory of supersymmetry. A prediction of supersym-
metry is the existence of ‘partner’ particles: corresponding to each boson (resp. fermion), there would be a
partner fermionic (resp. bosonic) particle. An example is the electron and its partner, the selectron [Rog07].
This prediction offers reasoning for the mass of the Higgs boson. Beyond this, supersymmetry has relevance
in string theory and addresses the ‘hierarchy problem’ in the standard model.

The theory of supersymmetry relies on supergeometric objects. One of the most fundamental of these objects
is the supermanifold. Supermanifolds have been defined independently by many authors [DeW84, Kos77,
Lei80, Rog80]. A supermanifold generalises the notion of a manifold by introducing a coordinate system
with both commuting and anti-commuting coordinates. Intuitively, these extra coordinates allow descriptions
of both bosons and fermions in the same space.

There are two main constructions of supermanifolds: the concrete construction, and the algebro-geometric
construction. The concrete construction describes supermanifolds as spaces that, locally, resemble flat
superspace (the model space in supergeometry). On the other hand, the algebro-geometric construction
defines a supermanifold as a topological space equipped with a sheaf of Z/2Z-graded algebras. This is
analogous to how we can view a smooth manifold as a ringed space that is locally isomorphic to Euclidean
space with its sheaf of smooth functions.

One outcome of developing the theory of supersymmetry is a generalisation of the current mathematical
framework in physics. The existing local model of the universe, in general relativity, can be described as a
pseudo-Riemannian manifold. So, it is natural to consider Riemannian structures on supermanifolds. The
field of Riemannian geometry enables one to consider angles, length and volume on geometric objects. A key
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concept in the field is that of a Riemannian metric. A Riemannian metric endows a smooth manifold with a
family of inner products on its tangent spaces. It has been shown that a generalisation of this, and many other
concepts in Riemannian geometry, can be defined for supermanifolds; for instance, see [Goe08].

This project focuses on investigating the Ricci flow in the setting of supermanifolds. In particular, we consider
homogeneous superspaces.

The Ricci flow is a second-order partial differential equation that evolves a Riemannian metric over time.
Intuitively, the Ricci flow deforms a Riemannian metric towards one with distinguished curvature. For
example, if n = 2, the Ricci flow will deform a metric to one with constant curvature, giving a proof of the
two-dimensional uniformisation theorem.

Let (M,g0) be a Riemannian manifold of dimension n. A one-parameter family of Riemannian metrics
{g(t)}t∈[0,T ) is said to be a Ricci flow with initial metric g0 if it satisfies the initial value problem

(1.1)
∂

∂ t
g(t) =−2Ric(g(t)), g(0) = g0.

The Ricci flow was first introduced by Hamilton in [Ham82], where he proved that a compact three-manifold
which admits a metric with strictly positive Ricci curvature also admits a metric of constant positive curvature.
The most notable application of Hamilton’s Ricci flow is in Perelman’s proof of the Poincaré conjecture (and
the more general Thurston’s conjecture) in 2002 and 2003. The Poincaré conjecture asserts that every simply
connected, closed (compact and without boundary) three-manifold is homeomorphic to the three-sphere.

To gain some insight into the motivation behind equation (1.1), fix a point p ∈M. At p, one can choose
coordinates so that

Ri j = ∆(gi j)+ lower order terms,

where ∆ is the Laplace-Beltrami operator, a generalisation of the Laplacian to functions on Riemannian
manifolds. In this light, (1.1) looks remarkably similar to the heat equation

∂

∂ t
u(t) = ∆u.

The heat equation can be understood as a process that disperses heat over time. This analogy motivates the
intuition described above, where the Ricci flow ‘averages out’ the metric according to its Ricci curvature.
However, the Ricci flow is not precisely a heat flow, as it only demonstrates weakly parabolic behaviour.
As a result, the conventional theory of existence and uniqueness of parabolic equations cannot be immedi-
ately applied. Regardless, short-time existence and uniqueness was established by Hamilton for compact
manifolds using the Nash-Moser inverse function theorem [Ham82]. DeTurk subsequently presented a more
straightforward proof where he considered a strictly parabolic equation ‘equivalent’ to (1.1). This facilitated
the application of the standard theory of existence and uniqueness of parabolic equations [DeT83].

A driving philosophical question in Riemannian geometry is whether, for a fixed manifold M, there exists a
‘best’ metric on M [Bes87, 0.4]. In dimension two, this question is answered by the metrics of constant Gauss
curvature. A natural generalisation of this in higher dimensions is the notion of constant Ricci curvature
[Bes87, 0.6]. Such metrics are called Einstein and are characterised by the equation Ricg = λg, λ ∈ R.
Among other distinguished properties, Einstein metrics evolve only by scaling under the Ricci flow. Indeed,
suppose the initial metric g0 is Einstein. A solution to (1.1) gives

g(t) = (1−2λ t)g0.
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We see different behaviour in the flow based on the sign of λ . For example, the round sphere (Sn,g0) has
Ric(g0) = (n− 1)g0, so g(t) = (1− 2(n− 1)t)g0. As t → T = 1

2(n−1) , the space collapses to a point but
retains its ‘shape’. This is known as the round shrinking sphere.

FIGURE 1. The evolution of S2 under the Ricci flow

On the other hand, hyperbolic space (Hn,g0) has Ric(g0) =−(n−1)g0, so g(t) = (1+2(n−1)t)g0. In this
case, we say the space expands homothetically for all time. If λ = 0 then the initial metric is fixed along the
flow.

In general, the topology of the manifold does not always allow for the existence of such distinguished metrics.
In these cases, the Ricci flow may develop a singularity. A singularity is reached at time T if the flow cannot
be smoothly extended beyond T . We have already encountered an example of this in the round shrinking
sphere. The good news is that singularities can be overcome. One technique for this involves renormalising
the Ricci flow. For instance, to keep the volume of (M,g(t)) constant over time, we consider the normalised
Ricci flow equation

∂

∂ t
g(t) =−2Ricg(t)+

2
n

∫
M S(g(t))dvolg∫

M dvolg
g(t).

Under this equation, the round sphere, for example, is a genuine fixed point.

We now specialise the discussion to G-invariant metrics on homogeneous spaces. In this setting, the Ricci
flow equation simplifies to a system of ordinary differential equations (ODEs).

Consider a group G acting on a smooth manifold M. A Riemannian manifold (M,g) is homogeneous if G
is a closed subgroup of the isometry group of M that acts transitively. Loosely, this condition says that M
has the same geometry at every point. It can be shown that a Riemannian homogeneous space (M,g) is
diffeomorphic to the quotient space G/H. Here, H represents the isotropy subgroup Gp at some p ∈M which,
since G acts transitively, is conjugate to Gp′ for all p′ ∈M.

If G/H admits a G-invariant metric, then the Lie algebra of G has the decomposition

(1.2) g= h⊕m,

where h= Lie(H) and m is the module associated with the isotropy representation. We have the remarkable
one-to-one correspondence:{

G invariant metrics,
g, on G/H

}
←→

{
AdH -invariant scalar products

⟨·, ·⟩ on m

}
.

This correspondence changes the problem of studying G-invariant metrics on G/H to studying AdH-invariant
scalar products on the module m.

The Ricci flow on homogeneous spaces, as well as the related problem concerning the existence of Einstein
metrics on the same spaces, has been studied extensively [BWZ04, Böh15, Buz14, DK08, IJ92, Laf15, WZ86,

3



WZ91]. Wang and Ziller [WZ86] apply a variational approach to present a general existence theorem for
homogeneous Einstein metrics, while also providing examples of homogeneous spaces with no Einstein
metrics. Restricting to G-invariant metrics with volume one, they consider the critical points of the Einstein-
Hilbert functional

E (g) =
∫

M
S(g)dvolg,

and show that these are precisely the Einstein metrics on M. Given a homogeneous space G/H, it is not
always guaranteed that a homogeneous Einstein metric exists. The lowest-dimensional example of this, with
dimension 12, is SU(4)/SU(2).

In the case where m decomposes into two irreducible, inequivalent summands m1 and m2, Buzano completely
describes the behaviour of the homogeneous Ricci flow [Buz14]. It was shown that the homogeneous Ricci
flow reaches a singularity in finite time. Böhm studies the long-time behaviour of homogeneous Ricci flows
in general [Böh15]. He shows that on any homogeneous space not diffeomorphic to the torus T n, the Ricci
flow reaches a singularity in finite time.

We now turn our attention to the super setting. Let M = G/H be a homogeneous superspace. Following the
non-super analogue, we establish a decomposition

g= h⊕m.

In this project, we investigate scenarios where m breaks down into s irreducible summands

m=m1⊕·· ·⊕ms.

We choose this decomposition in such a way that our G-invariant metric g decomposes as

(1.3) ⟨·, ·⟩= x1Q|m1⊕·· ·⊕ xsQ|ms ,

where xi ∈ R\{0} for all 1≤ i≤ s and Q is a fixed Riemannian metric on G. It turns out that a solution g(t)
to the Ricci flow (1.1) starting at g remains homogeneous and has decomposition

⟨·, ·⟩= x1(t)Q|m1⊕·· ·⊕ xs(t)Q|ms ,

where each xi(t) is a smooth function of t with xi(0) = xi.

Our focus first lies in the case when s = 1, i.e. m is irreducible. As observed in the non-super context, Schur’s
lemma asserts that there exists a unique, up to scaling, G-invariant metric on G/H, which is necessarily
Einstein. A key contrast to the non-super setting is that certain quantities (such as structure constants or the
dimension of the summands) can take on negative values. As a result, we see one of two behaviours in the
Ricci flow:

(i) x(t)→ 0 as t→ T , or
(ii) x(t)→±∞ as t→ ∞.

We subsequently consider when m=m1⊕m2. In particular, we assume that H is not maximal in G. In this
setting, we make some progress, leading to a conjecture:

CONJECTURE A. Let G/H be a homogeneous superspace where H is not maximal in G and consider a
homogeneous G-invariant Riemannian metric of the form (1.3). If (x1(0),x2(0)) ∈ {(x1,x2) ∈ R2 : x1 ̸=
0,x2 > 0}, then the behaviour of the quantity x1(t)

x2(t)
under the homogeneous super Ricci flow is as in Tables 2,

3, and 4.

4



On the other hand, if x2(0) < 0 and A+B > 0 (resp. A+B < 0), then the behaviour of x1(t)
x2(t)

under the
homogeneous super Ricci flow is as in Tables 2, 3, and 4, found on pages 49 and 50, corresponding to the
columns with A+B < 0 (resp. A+B > 0).

This conjecture, if proven true, says that the Ricci flow on homogeneous supermanifolds exhibits different
behaviour, in general, to the non-super counterpart. In support of this, we construct two infinite families of
homogeneous supermanifolds with two inequivalent irreducible isotropy summands and study the Ricci flow
of their G-invariant metrics.

In our first family of examples, G/H = SU(pq+m|n)/SU(p)×SU(q)×U(m|n), the Ricci flow has no finite
time singularities given x1(0),x2(0)> 0 and m > n.

We study the Ricci flow of G-invariant metrics on the homogeneous superspace
G/H = SOSp(2|2n)/SOSp(2|2(p− 1))×Sp(2(n+ 1− p)) in full generality. We consider multiple cases
based on the initial signature of the metric.

Structure of the thesis

This thesis is divided into four main chapters.

In chapter 2, we introduce a grading to some basic objects, a key feature of supergeometry. First, we
investigate the grading of vector spaces, algebras and modules. We explore the language of sheaves from
algebraic geometry, which we then use to define supermanifolds and the structures on them. This is followed
by extending some basic notions from differential geometry, such as vector fields and maps between manifolds,
to the super setting. We introduce the theory of Lie supergroups and their actions on supermanifolds, ending
the chapter with a brief review of the representation theory of Lie groups. The exposition in this chapter
draws from [CCF11, EH00, Har77, Kos77, Lei80, Var04].

Chapter 3 introduces the additional structure of a graded Riemannian metric to supermanifolds. Applying
this, we define connections and curvature, seeing an analogue of the fundamental theorem of Riemannian
geometry hold. We finish by defining homogeneous superspaces and discussing their geometry. References
for this chapter include [DM99, DeW84, Goe08, Kac77, Sch84].

In Chapter 4, we discuss some of the more technical background of the Ricci flow, developing tools that will
be useful for our analysis of homogeneous spaces. We then set the scene for the Ricci flow on homogeneous
spaces, outlining the known results and theory in the field. The end of this chapter presents a detailed example
of the Ricci flow on a low-dimensional Lie supergroup to highlight some key differences in computation.
This chapter follows information presented in [Arv03, Bes87, BWZ04, Böh15, Buz14, Ham82, Ham84, IJ92,
Laf15, Pet06, WZ86, WZ91].

In Chapter 5, we introduce the homogeneous Ricci flow on supermanifolds, establishing notation and
conventions. We then discuss an obstruction to the variational interpretation in the super setting. The
remainder of the chapter focuses on the analysis of singularities in the homogeneous Ricci flow, specifically
for spaces whose isotropy representation decomposes into one or two irreducible summands. We conclude by
discussing future directions.

5



6



CHAPTER 2

An introduction to supergeometry

In this chapter, we introduce the basic definitions and essential results necessary for the study of supergeometry.
A succinct overview of Lie group representation theory is also included at the end of this chapter. For readers
seeking a comprehensive introduction to these topics, we suggest consulting [Arv03, CCF11, Kos77, Lei80,
Var04].

2.1. Super linear algebra

This section introduces the concept of a Z/2Z-grading in linear algebra, with adaptations of some familiar
definitions in the field.

One of the first definitions encountered is that of a vector space. A Z/2Z-grading (typically labelled with the
prefix ‘super’) distinguishes objects based on their parity. In this context, a vector superspace is a vector
space that splits into two subspaces

V =V0⊕V1,

where v ∈V0 is considered even and v ∈V1 is considered odd. Elements that lie exclusively in V0 or V1 are
called homogeneous. The parity of such elements is defined as:

|v|=

{
0, v ∈V0

1, v ∈V1.

If the subspaces V0 and V1 have dimensions m and n, respectively, we say V has dimension m|n. To specify
the even and odd dimensions, we sometime write V m,n.

EXAMPLE 2.1. The set of all linear maps between two supervector spaces, V and W, forms a vector
superspace, which we denote by Hom(V,W ). This space can be divided into maps that preserve parity and
reverse it:

Hom(V,W )0 := {T : V →W | T (Vi)⊂Wi, i ∈ Z/2Z},
Hom(V,W )1 := {T : V →W | T (Vi)⊂Wi+1, i ∈ Z/2Z}.

For a field k with characteristic 0, kp+q =: kp,q can be attributed the structure of a vector superspace. Indeed,
if {ei}p+q

i=1 is a basis for kp+q, we classify e1, . . . ,ep as even and ep+1, . . . ,ep+q as odd. This gives rise to
the decomposition kp,q

0 = kp and kp,q
1 = kq. Just as we can represent linear maps between vector spaces as

matrices, we can view the endomorphisms in Hom(kp,q,kp,q) as matrices of the form(
A B
C D

)
=

(
A 0
0 D

)
+

(
0 B
C 0

)
where A,B,C, and D are p× p, p×q,q× p, and q×q matrices.
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Let V and W be two vector superspaces. The direct sum V ⊕W forms a vector superspace with grading given
by (V ⊕W )0 =V0⊕W0, and (V ⊕W )1 =V1⊕W1. The tensor product V ⊗W also forms a vector superspace
with grading given by

(V ⊗W )0 := (V0⊗W0)⊕ (V1⊗W1), (V ⊗W )1 := (V0⊗W1)⊕ (V1⊗W0).

A scalar superproduct is a non-degenerate, graded-symmetric, even, R-bilinear form ⟨·, ·⟩ : V ×V → R. In
other words, for homogeneous X ,Y,Z ∈V , a scalar superproduct satisfies three conditions:

(i) X 7→ ⟨X , ·⟩ is an isomorphism,
(ii) ⟨X ,Y ⟩= (−1)|X ||Y | ⟨Y,X⟩, and

(iii) ⟨aX +bY,Z⟩= a⟨X ,Z⟩+b⟨Y,Z⟩= (−1)|X+Y ||Z| ⟨Z,aX +bY ⟩.

We see that a scalar superproduct splits into a symmetric scalar product ⟨·, ·⟩0 on V0 and a symplectic
scalar product ⟨·, ·⟩1 on V1. Hence, if there exists a scalar superproduct on V , the odd subspace V1 must be
even-dimensional.

Let V m,n be a vector superspace equipped with a scalar superproduct ⟨·, ·⟩. A homogeneous basis {v1, · · · ,vm+n}
of V is called a ⟨·, ·⟩-normalised basis if there exists 0≤ p≤ m such that

(2.1) (⟨vi,v j⟩)m+n
i, j=1 =


Ip 0 0 0
0 −Im−p 0 0
0 0 0 Ir

0 0 −Ir 0

 ,

where Ik is the identity matrix of size k, and 2r = n.

A superalgebra is a vector superspace A = A0⊕A1 that is a unital associative algebra whose multiplication
respects the parity of the vector superspace, i.e., AiA j ⊂ Ai+ j. We say a superalgebra is supercommutative if

ab = (−1)|a||b|ba,

for homogeneous a,b ∈ A. Given a superalgebra A over a field k, let D ∈ Hom(A,A) be a k-linear map. We
say that D is a derivation of A if

D(ab) = D(a)b+(−1)|D||a|aD(b),

where a,b ∈ A. It becomes evident that a fundamental distinction between standard theory and graded theory
arises in the factor that emerges when commuting two objects.

Let A be a superalgebra. We say a vector superspace M is a left A-module if there exists a morphism of
supervector spaces A⊗M→M, given by a⊗m 7→ am, satisfying the following for a,b ∈ A and x,y ∈M:

(i) a(x+ y) = ax+ay,
(ii) (a+b)x = ax+bx,

(iii) (ab)x = a(bx), and
(iv) 1x = x.

We say that an A-module M is free if it contains p even elements {e1, . . . ,ep} and q odd elements {ε1, . . . ,εq}
such that

M0 = SpanA0
{e1, . . . ,ep}⊕SpanA1

{ε1, . . . ,εq},
M1 = SpanA1

{e1, . . . ,ep}⊕SpanA0
{ε1, . . . ,εq}.
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A free A-module is often denoted by Ap,q. Consider T ∈End(Ap,q). Referring to the discussion in example 2.1,
we can represent T as a matrix of size (p+q)× (p+q) with block form

T =

(
T1 T2
T3 T4

)
.

Given that Ap,q is a free A-module, entries in T1 and T4 have the same parity as T , while entries in T2 and
T3 possess opposite parity. We define the supertrace of T to be strT = trT1− (−1)T trT4. The supertrace is
commutative:

str(T S) = str(ST ).

2.2. Lie superalgebras and real forms

A Lie superalgebra is a vector superspace L endowed with an even morphism

[·, ·] : L⊗L→ L

such that for all homogeneous x,y,z ∈ L, [·, ·] satisfies graded symmetry and the graded Jacobi identity:

(i) [x,y]+ (−1)|x||y|[y,x] = 0, and
(ii) [x, [y,z]]+ (−1)|x|(|y|+|z|)[y, [z,x]]+ (−1)|y|(|z|+|x|)[z, [x,y]] = 0.

The set of all derivations of a superalgebra forms a Lie superalgebra.

EXAMPLE 2.2. The superalgebra

End(V ) := Hom(V,V )0⊕Hom(V,V )1

forms a Lie superalgebra with the supercommutator, which is defined for homogeneous elements as follows:

[X ,Y ] := XY − (−1)|X ||Y |Y X .

This definition extends linearly to all elements of End(V ). If V = km,n, then End(V ) with the supercommutator
becomes the general linear superalgebra, gl(m|n).

Let g be a Lie superalgebra. We define the adjoint action of g on itself as the mapping ad : g×g→ g, given by
(X ,Y ) 7→ [X ,Y ]. For each X ∈ g, we obtain an endomorphism adX : g→ g, where Y 7→ [X ,Y ]. Consequently,
the adjoint action induces a representation of g, denoted as ad : g→ End(g). Analogous to the non-super
case, the Jacobi identity is equivalent to the adjoint map being a derivation: [ad X ,ad Y ] = ad [X ,Y ].

Kac [Kac77] gives a classification of finite-dimensional simple complex Lie superalgebras. Consider
gC = gC0 ⊕gC1 to be either gl(m|n)C or a finite-dimensional basic classical Lie superalgebra over C. That is,
gC0 is reductive (its adjoint representation is completely reducible) and gC admits a non-degenerate invariant
supersymetric even bilinear form (·, ·), which is adg-invariant.

We say that a Lie subalgebra hC ⊂ gC0 is a Cartan subalgebra of gC if

(i) hC is nilpotent, and
(ii) hC = NgCh

C = {X ∈ gC : [X ,h]⊂ hC}.

Let (hC)∗ denote the dual space of hC. For α ∈ (hC)∗, define the vector superspace

gCα :=
{

X ∈ gC : [H,X ] = α(H)X for all H ∈ hC
}
.
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We say that α ∈ (hC)∗ is a root if α ̸= 0 and gCα ̸= {0}. Denote by ∆ the set of roots in (hC)∗. We say that ∆

is the root system of gC relative to hC. A root α is even (resp. odd) if gCα ⊂ g0 (resp. gCα ⊂ g1). Denote by ∆0
and ∆1 the even and odd roots of gC relative to hC, respectively. We have the root space decomposition of gC:

gC = hC⊕
⊕
α∈∆

gCα ,

where gCα are the root subspaces of gC. We say that Π⊂ ∆ is the set of simple roots if

(i) Π = {α1, . . . ,αl}, and
(ii) for each α ∈∆, there exist unique integers of the same sign m1, . . . ,ml such that α =m1α1+ . . .+mlαl .

When mi ≥ 0 (resp. mi ≤ 0) for each 1≤ i≤ l, we say that α is a positive (resp. negative) root. The set of
positive (resp. negative) roots is denoted ∆+ (resp. ∆−).

The bilinear form (·, ·)|hC is non-degenerate, giving us a natural isomorphism between hC and (hC)∗. In other
words, to each λ ∈ (hC)∗, we associate the vector Hλ defined by (H,Hλ ) = λ (H) for all H ∈ hC. This allows
us to define a real subalgebra of gC0 :

hR :=
⊕
α∈∆

SpanR{Hα}.

For each α ∈ ∆, let Eα denote a non-zero vector in gCα . It is easy to see that each gCα = SpanC{Eα} is
one-dimensional. We can choose Eα in such a way that B(Eα ,E−α) =−1 and [Eα ,E−α ] =−Hα . We say
that {Hα ,Eα} is a Cartan-Weyl basis for gC relative to hC.

In order to study real Lie superalgebras, we consider the real forms of complex Lie superalgebras. We say
that a real Lie superalgebra g is a real form of a complex Lie superalgebra gC if the complexification of
g, g⊗RC, is isomorphic to gC. We can characterise real forms of the above complex Lie superalgebras as
follows. Define a transformation ∗ : gC→ gC such that, for all X ,Y ∈ gC and z ∈ C,

[X ,Y ]∗ = [Y ∗,X∗], (X∗)∗ = X , and (zX)∗ = zX∗.

The real form g of gC is then

g := {X ∈ gC0 : X∗ =−X}⊕{
√
−1X ∈ gC1 : X∗ =−X}.

We say that g is compact if g0 is a compact real form of gC0 in the classical sense. In a Cartan-Weyl basis, this
becomes

g=
√
−1hR⊕

⊕
α∈∆

+
0

RAα ⊕
⊕

α∈∆
+
0

R
√
−1Bα ⊕

⊕
α∈∆

+
1

RAα ⊕
⊕

α∈∆
+
1

R
√
−1Bα ,

where Aα = Eα −E−α and Bα = Eα +E−α .

EXAMPLE 2.3. Consider the general linear superalgebra gl(m|n)C. If we fix a basis for Cm,n, then

gl(m|n)C = gl(m|n)C0 ⊕gl(m|n)C1 =

{(
A 0
0 B

)}
⊕
{(

0 C
D 0

)}
,

where A,B,C,D are complex matrices of size m×m,m×n,n×m, and n×n, respectively. For 1≤ i, j≤m+n,
let Ei j denote the matrix with 1 in the (i, j)th entry and 0 elsewhere. By defining the transformation (Ei j)

∗=E ji

for all 1≤ i, j ≤ m+n, we obtain the compact real form u(m|n).
10



2.3. Prelude into the theory of sheaves

One approach to defining a supermanifold follows the familiar definition of a manifold. This involves glueing
together patches that locally resemble a model space with both commuting and anti-commuting coordinates.
The contribution of anti-commuting variables is nuanced because of their nilpotency. Kostant [Kos77] was
among the pioneering mathematicians who recognised the analogy between supermanifolds and schemes
– spaces endowed with a family of rings containing nilpotent elements. As a result, using Grothendieck’s
theory of schemes, a second definition of a supermanifold was introduced. Before delving into this definition
of a supermanifold, it is crucial to establish some foundational concepts from algebraic geometry. For
a comprehensive exposition of this elegant theory, we suggest that readers consult the books [EH00]
and [Har77].

Sheaves are fundamental to algebraic geometry because they provide a way to track local algebraic information
on a topological space. In this section, we present the definition of a sheaf and some related terminology.
We introduce an alternate method for defining a smooth manifold that leverages this abstract language. This
approach serves as a guide for the subsequent discussion of supermanifolds.

A sheaf of commutative algebras F on a topological space M is a map that assigns a commutative algebra
F (V ) to each open set V ⊂M such that for every U ⊂V , there exists a restriction morphism rV,U : F (V )→
F (U) (sometimes denoted by ·|U ), satisfying the following properties:

(i) there exists an identity map rU,U = idM;
(ii) for any open covering {Ui}i∈I of U and a family { fi}i∈I , fi ∈F (Ui) satisfying fi|Ui∩U j = f j|Ui∩U j for

all i, j ∈ I, then there exists a unique f ∈F (U) with f |Ui = fi.

The second condition is known as the glueing property. If only (i) is satisfied, we call F a presheaf. The
elements in F (U) are called sections over U ; when U = M, we call such elements global sections.

EXAMPLE 2.4. The following are examples of sheaves:

(i) Given any topological space X, one may define the sheaf of continuous real-valued functions on X.
(ii) Given a differentiable manifold, we may consider the commutative algebra of smooth function C ∞(U)

defined on some open subset U. Taking the restriction map to be the restriction of smooth functions,
C ∞ forms a sheaf.

(iii) Let X be a topological space. Define an algebra of functions on U ⊂ X by O(U) := { f : U →
R | f is constant}. This assignment forms a presheaf but not a sheaf. To see this, let U =U1∪U2, and
define f1 ∈ O(U1) by f1(x1) = 1, and f2 ∈ O(U2) by f2(x2) = 2. We find that there exists no constant
function f ∈ O(U) satisfying f |Ui = fi.

Let F be a presheaf on a topological space M, and fix a point x ∈M. For open neighbourhoods, U and V
of x, let s and t be sections over U and V , respectively. We say that (U,s) and (V, t) are equivalent if there
exists a neighbourhood W ⊂U ∩V such that s|W = t|W .The set of all such equivalent pairs forms the stalk at
x, denoted by Fx. The elements of Fx are called germs.

11



Let F and G be presheaves on M. A morphism of presheaves φ : F → G is a family of algebra morphisms
φU : F (U)→ G (U) defined for each open U ⊂M such that the following diagram commutes:

F (V ) G (V )

F (V ) G (U)

φV

rV,U rV,U

φU

A morphism of sheaves is a morphism of the underlying presheaves.

REMARK 2.5. Any morphism of presheaves φ : F → G induces a morphism on the stalks φx : Fx→ Gx.

If all the induced stalk morphisms injective, then a morphism of sheaves is considered injective. Surjectivity
can be defined in a similar manner, but one should be cautious as it is possible to have a surjective sheaf
morphism φ : F → G where φU is not surjective for some U .

Suppose we have a morphis of sheaves, φ : F → G . By mapping U to the kernel of φ(U), we can always
define a sheaf. However, mapping U to the image of φ(U) only defines a presheaf in general. When we
have a presheaf, we naturally wonder if it can be turned into a sheaf. The following explains how this can be
accomplished.

Let F be a presheaf on M. The sheafification of F is the unique sheaf F̃ and a morphism of presheaves
ϕ : F → F̃ such that for all x ∈M, ϕx : Fx→ F̃x is an isomorphism.

Let F and G be sheaves on a topological space M, and define an injective morphism of sheaves such that
G (U)⊂F (U) for all U ⊂M. We can then consider the quotient sheaf F/G to be the sheafification of the
image presheaf U 7→F (U)/G (U).

If M is a topological space and F is a sheaf of commutative rings on M, we call the pair M = (M,F ) a
ringed space. If, in addition, each stalk Fx has a unique maximal ideal, i.e., it is a local ring, we say that M
is a locally ringed space.

A morphism of ringed spaces Φ : M →N is a pair Φ = (φ ,φ ∗) where φ : M→ N is a topological space
morphism and φ ∗ : G → φ∗F is a sheaf morphism. Here φ∗F is a sheaf defined on N by (φ∗F )(U) =
F (φ−1(U)) for every open U ⊂ N.

Every morphism of ringed spaces induces a morphism on the stalks, φx : Gφ(x)→Fx. Let mM,x and mN,φ(x)

be the maximal ideals of the stalks Fx and Gφ(x), respectively. If Φ satisfies φ−1
x (mM,x) =mN,φ(x), we say Φ

is a locally ringed space morphism.

To end this section, we present an alternate definition of a smooth manifold, adopting the abstract language of
sheaves.

Let M be a Hausdorff, second countable topological space and OM be a sheaf of commutative algebras on
M such that (M,OM) is a locally ringed space. We say (M,OM) is a smooth manifold of dimension n if it is
isomorphic as a locally ringed space to (Rn,C ∞

Rn), where C ∞
Rn is the sheaf of smooth functions on Rn.

We must check that this definition agrees with the classical construction of a smooth manifold. This fact
requires three key ideas:

1. the usual construction of a manifold M gives rise to a sheaf O such that (M,O) is a ringed space;
2. the ringed space (M,O) is locally isomorphic to (Rn,C ∞

Rn);
3. given a ringed space (M,OM) that is locally isomorphic to (Rn,C ∞

Rn), we can construct an atlas on M.

12



REMARK 2.6. With notation as in (3) and (1), the sheaf O turns out to be isomorphic to the sheaf OM.

LEMMA 2.7. Let M be a Hausdorff, second countable topological space equipped with a maximal smooth
atlas A := {(Ui,φi)}. Then, there exists a locally ringed space (M,C ∞

M ) where C ∞
M is the sheaf of smooth

functions on M.

PROOF. For each open subset U ⊂M, consider the assignment U 7→C ∞
M (U), where C ∞

M (U) is the algebra
of smooth functions on U . We define the restriction morphisms by taking the usual restriction of functions:
rV,U( f ) = f |U for open sets U ⊂ V ⊂M. It follows that C ∞

M is a presheaf. To see that it is in fact a sheaf,
take an open cover {Ui}i∈I of U and a family of smooth functions { fi}i∈I such that fi and f j agree on the
intersection Ui∩U j, for all i ̸= j. The topological pasting lemma asserts the existence of a unique continuous
function f such that f |Ui = fi. This f is smooth since it restricts to smooth functions on U .

We know (M,C ∞
M ) is a ringed space by definition. For each x ∈ M, we define a mapping from the stalk

C ∞
M,x→ R by [(U, f )] 7→ f (x). Due to the constant functions being smooth, this mapping is surjective. We

know that the kernel K of this map is an ideal, and so we may consider the quotient of rings C ∞
M,x/K. By

the first isomorphism theorem for rings, C ∞
M,x/K ∼= R. Since the above quotient ring is isomorphic to a field,

the ideal K must be maximal. It is readily seen that any element not in K must be invertible and so it is the
unique maximal ideal. This shows that (M,C ∞

M ) is a locally ringed space.

LEMMA 2.8. (M,C ∞
M ) is locally isomorphic as a locally ringed space to (Rn,C ∞

Rn).

PROOF. We aim to demonstrate that for every x ∈M, there exists an open neighbourhood Ui ⊂M of x,
such that Φ : (U,C ∞

U )→ (V,C ∞
V ) is an isomorphism of ringed spaces. Here, C ∞

U denotes the sheaf of smooth
functions restricted to the subset U ⊂M. In essence, we must identify, for each x ∈M, a homeomorphism
ϕ : U →V and an isomorphism of sheaves Φ∗ : C ∞

V →Φ∗C ∞, where (Φ∗C ∞
U )(W ) := C ∞

U (ϕ(W )) for some
open W ⊂V .

In fact, for any x ∈M, there exists an open subset Ui ⊂M containing x. Furthermore, we have the homeo-
morphism φi : Ui→ φi(Ui) =: Vi. We proceed to define the sheaf isomorphism Φ∗ using its underlying ring
isomorphisms, Φ∗Vi

: C ∞
Vi
(W )→ C ∞

Ui
(φ−1

i (W )) where W ⊂Vi. For a smooth function f defined on Vi ⊂ Rn,
we define Φ∗Vi

by f 7→ f ◦φi. This clearly defines a ring isomorphism, thereby defining a sheaf isomorphism
Φ∗.

Given that we are working with locally ringed spaces, each stalk is a local ring. Consequently, our ring
isomorphisms Φ∗Vi

map units to units, preserving the local ring property.

THEOREM 2.9. Let M be a Hausdorff, second countable topological space and OM a sheaf of commutative
algebras such that (M,OM) is a locally ringed space isomorphic to (Rn,C ∞

Rn).Then, there exists a maximal
smooth atlas on M such that (M,C ∞

M )∼= (M,OM), where C ∞
M is the sheaf of smooth functions on M.

PROOF. We are given a local isomorphism between (M,OM) and (Rn,C ∞
Rn). As a result, for each x ∈M,

there exists a neighbourhood Ui ⊂M containing x and an isomorphism Φ : (Ui,OUi)→ (Vi,C ∞
Vi
), consisting

of a homeomorphism φi : Ui→ Vi and a sheaf isomorphism Φ∗ : C ∞
Vi
→ Φ∗OUi . We can construct an atlas

from the topological maps on the open subsets of M, {(Ui,φi)}. It remains to show that the transition maps
are smooth.

Consider two open subsets U and V of M, and their respective locally ringed space isomorphisms, Φ1 =
(ϕ1,Φ

∗
1) and Φ2 = (ϕ2,Φ

∗
2). Consider the restricted isomorphisms

Φ1 : (U ∩V,OU∩V )→
(

ϕ1(U ∩V ),C ∞

ϕ1(U∩V )

)
, and
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Φ2 : (U ∩V,OU∩V )→
(

ϕ2(U ∩V ),C ∞

ϕ2(U∩V )

)
.

It is evident that Φ1 ◦Φ
−1
2 is an isomorphism. Define open sets W ⊂ ϕ1(U ∩V ) and W̃ =

(
ϕ1 ◦ϕ

−1
2

)−1
(W ).

Then, the ring morphism (Φ1 ◦Φ
−1
2 )∗W : C ∞(W )→ C ∞(W̃ ) is given by f 7→ f ◦ ϕ1 ◦ ϕ

−1
2 . To see this,

assume the contrary. Without loss of generality, we can translate f such that (Φ1 ◦Φ
−1
2 )∗W ( f )|x = 0 and

f ◦ϕ1◦ϕ
−1
2 (x) ̸= 0. In other words, [ f ]∈C ∞

ϕ1◦ϕ−1
2 (x)

is a non-zero, invertible germ and [(Φ1◦Φ
−1
2 )∗W ( f )]∈C ∞

x

is the zero germ. This is a contradiction as ring isomorphisms map units to units.

Finally, we have that f ◦ϕ1 ◦ϕ
−1
2 : W̃ →W →R is smooth for all f : W →R, and so ϕ1 ◦ϕ

−1
2 is smooth. This

shows that transition maps in our atlas are smooth. Thus, (M,OM) has the structure of a smooth manifold.

2.4. Supermanifolds – the algebro-geometric construction

In this section, we introduce the concept of a supermanifold from an algebro-geometric perspective. This
elegant formulation enables us to extend most concepts from differential geometry.

Following the alternative definition of a smooth manifold presented earlier, we introduce the graded analogue
of ringed spaces, which paves the way for defining a supermanifold. A superringed space, denoted as S ,
refers to a topological space S equipped with a sheaf of supercommutative rings, OS. We say a superringed
space is a superspace if each stalk admits a unique homogeneous maximal ideal I = (I∩R0)⊕ (I∩R1). In
such instances, we say each stalk is a local superring.

Just as we have defined morphisms for ringed spaces and locally ringed spaces, we establish analogous
definitions for their super counterparts. It is important to note that in the super setting, morphisms must
preserve the parity of elements.

EXAMPLE 2.10. Let M be a smooth manifold with the sheaf of smooth functions C ∞
M . We can define the sheaf

of supercommutative R-algebras by the assignment

U 7→ OM(U) := C ∞
M (U)⊗Λ(ξ1, . . . ,ξn),

where U is an open subset of M. In a sense, we can view elements of these rings as superfunctions:

(2.2) f (x,ξ ) = ∑
µ

fµ(x)ξ µ = ∑
µ

fµ(x)ξ
µ1
1 ∧ . . .∧ξ

µn
n ,

where fµ(x1, . . . ,xm) ∈C∞
M(U) and µ ∈ (Z/2Z)n.

Equipping M with this sheaf gives rise to a superspace (M,OM), where the maximal ideal of OM,x is generated
by the maximal ideal of C ∞

M,x and the odd indeterminates ξ1, . . . ,ξn. In particular, when M = Rm, we obtain
flat superspace

Rm,n := (Rm,C ∞
Rm⊗Λ(ξ1, . . . ,ξn)).

This serves as the model space for our definition of a supermanifold.

Let (S,OS) be a superspace and take an open subset U of S. Then, there exists a superspace (U,OS|U) known
as the open subsuperspace associated with U (although we often just say subspace). The subsequent example
outlines the general linear supergroup as a subspace of the matrix group – an extremely significant space in
the progression of supergeometry.
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EXAMPLE 2.11. Let M(m|n) = Rm2+n2,2mn denote the superspace corresponding to the vector space of
((m+n)× (m+n))-matrices. As a vector superspace, M(m|n) decomposes into

(M(m|n))0 =

{(
A 0
0 D

)}
, and (M(m|n))1 =

{(
0 B
C 0

)}
,

where A,B,C,D are (m×m),(m×n),(n×m),(n×n)-matrices respectively. Define m2+n2 even coordinates
ti j corresponding to the matrices A and D, where i, j ∈ {1, . . . ,m} or i, j ∈ {m+ 1, . . . ,m+ n}. We also
define 2mn odd coordinates ξkl corresponding to the matrices B and C, where k ∈ {1, . . . ,m} and l ∈
{m+1, . . . ,m+n} or k ∈ {m+1, . . . ,m+n} and l ∈ {1, . . . ,n}.

The structure sheaf of M(m|n) is defined by the assignment

V 7→ OM(m|n)(V ) := C ∞
Mm×Mn

(V )⊗Λ(ξkl)

for all open V ⊂Mm×Mn. Consider the open set U ⊂Mm×Mn which has det
(
t i j
)
̸= 0 for i, j ∈ {1, . . . ,m}

or i, j ∈ {m+1, . . . ,m+n}. Define the open subspace of M(m|n) associated with the open set U to be the
general linear supergroup GL(m|n) :=

(
U,OM(m|n)|U

)
.

REMARK 2.12. We often omit the field over which we are working. Unless otherwise stated, we will only
consider R.

Let C ∞
U be the sheaf of smooth functions on the domain U ⊂ Rm. We call the superspace

Um,n = (U,C ∞
Rm |U ⊗Λ(ξ1, . . . ,ξn)) a superdomain. We are finally ready to define a supermanifold.

A superspace M = (M,OM) is called a supermanifold if the following two conditions hold:

(i) M is a locally compact, second countable, Hausdorff topological space;
(ii) for each x ∈M, there exists an open neighbourhood U containing x such that there is an isomorphism

of superringed spaces
(U,OM|U )→Um,n ⊂ Rm,n,

where Um,n is a superdomain of Rm,n.

It isn’t clear what it means to evaluate a superfunction at a point, or even what points are in Rm,n. The
evaluation of f at a point (x1, . . . ,xm) ∈U gives a value f (x;ξ ) ∈ R⊗Λ(ξ1, . . . ,ξn). It is shown in [Var04]
that an element s = ∑µ sµξ µ ∈ R⊗Λ(ξ1, . . . ,ξn) is invertible if and only if s0 is invertible within a unital
commutative ring R.

Applying this result to R = C ∞
M (U), we deduce that a superfunction of the form (2.2) is invertible if and only

if f0 is invertible in C ∞
M (U). Consequently, we define the value of a superfunction f ∈ C ∞

M (U)⊗Λ(ξ1, . . . ,ξn)
at a point x ∈U to be the unique value k ∈ R such that f − k is not invertible in any neighbourhood of x ∈U .

EXAMPLE 2.13. Take M = R1,1, with global coordinates (t;ξ ). The global section f = tξ ∈ OM(R) has
the property that for any non-zero c ∈ R, tξ − c is invertible. Indeed, the inverse is given by −c−2tξ − c−1;
hence, the value of f at every point in R1,1 is 0.

For every supermanifold, we can establish an underlying smooth manifold by factoring out the nilpotent
elements. Given a supermanifold M = (M,OM) and an open subset U ⊂M, there exists a map εU : OM(U)→
F (U) defined by f 7→ f̃ , where f̃ : U → R is the evaluation map. The image of εU , which we denote by
F (U), is an algebra, thereby making εU a surjective algebra morphism. This gives rise to the short exact
sequence

0→J (U)→ OM(U)→F (U)→ 0,
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where J (U) := kerεU . It can be demonstrated that the assignment U 7→J (U) defines a sheaf. For each
U ⊂M, exactness results in the isomorphism F (U)∼=OM(U)/J (U). As the quotient of two sheaves defines
only a presheaf in general, we let F denote the sheafification of the presheaf defined by U 7→OM(U)/J (U).

This process constructs F to be locally isomorphic to C ∞
Rm , and so the ringed space MRed := (M,F ) is locally

isomorphic to (Rm,C ∞
Rm). We call MRed the body manifold of M .

The body manifold not only gives an intuitive perspective on supermanifolds, but also enables us to formulate
a system of local coordinates on M . Specifically, if U ⊂MRed is such that OM(U)∼= C ∞

Rm(U)⊗Λ(ξ1, . . . ,ξn),
we define (xi;ξ j) to be coordinates of M on U , where {xi}m

i=1 denote the standard coordinates on U ⊂MRed.

We end this section by offering an alternative approach to understanding functions on supermanifolds.

Let M = (M,OM) and V p,q = (V,C ∞
Rp ⊗Λ(η1, . . . ,ηq)) be supermanifolds. Define Ψ := (ψ,ψ∗) : M →

V p,q to be a morphism of supermanifolds. Denote the global system of coordinates on V p,q by (yi;η j). The
functions

fi = ψ
∗yi, 1≤ i≤ p, and θ j = ψ

∗
η j, 1≤ j ≤ q

are such that

(i) fi ∈ OM,0(M),
(ii) θ j ∈ OM,1(M), and

(iii) (ε f1, . . . ,ε fp)(M)⊂V .

The pullbacks of these super coordinate functions completely determine the morphism.

THEOREM 2.14 (Global Chart Theorem). If M = (M,OM) is a supermanifold, V ⊂ Rp an open subset, and
( fi;θ j) is a (p+q)-tuple of global sections in OM(M) that satisfy the above two conditions, then there exists
a unique morphism of supermanifolds Ψ = (ψ,ψ∗) : M → V p,q such that fi = ψ∗yi, and θ j = ψ∗η j.

PROOF. This proof is quite technical, so we refer the reader to [CCF11, Theorem 4.2.5].

EXAMPLE 2.15. Consider the supermanifold R1,2 and a morphism Ψ : R1,2→R1,2. In the global coordinates
{x,ξ1,ξ2}, a section f can be written as

f (x,ξ1,ξ2) = f0(t)+ f1(x)ξ1 + f2(x)ξ2 + f12(x)ξ1ξ2.

Recall that Ψ consists of a topological map ψ and a sheaf morphism, ψ∗. Let us prescribe the images of the
global coordinates under ψ∗:

x 7→ x∗ = x+ξ1ξ2, ξ1 7→ ξ
∗
1 = ξ

1, ξ2 7→ ξ
∗
2 = ξ2.

Under this mapping, we see f map to

ψ
∗( f ) = f (x∗,ξ ∗1 ,ξ

∗
2 ) = f0(x∗)+ f1(x∗)ξ1 + f2(x∗)ξ2 + f12(x∗)ξ1ξ2.

To make sense of this expression, we Taylor expand fI(x∗) = fI(x+ξ1ξ2) = fI(x)+ξ1ξ2 f ′I (x) for each index
I. This expansion terminates due to the nilpotency of the odd coordinates. Hence, defining the image of
global sections completely determines the supermanifold morphism.

2.5. The tangent sheaf and vector fields

In this section, we consider a supermanifold M = (M,OM) and define analogues for the tangent space and
tangent bundle. This will provide the groundwork to study the local structure of maps between supermanifolds.
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For each U ⊂ M, let Der(OM(U)) be the set of superderivations of OM(U). Recall that an element D ∈
Der(OM(U)) is a map D : OM(U)→ R such that

D(st) = (Ds)t +(−1)|D||s|s(Dt)

for s, t ∈OM(U). The set Der(OM(U)) is a vector superspace and has a super OM(U)-module structure given
by

(sD)t := s(Dt), sD ∈ Der|s|+|D|(OM(U)).

Define the tangent bundle of M to be the OM(U)-module of derivations of OM(U), denoted by TM(U) :=
Der(OM(U)). We have a natural restriction map TM(V )→TM(U) for U ⊂V ⊂M, turning TM into a sheaf
of OM-modules. Due to its sheaf structure, we sometimes refer to TM as the tangent sheaf of M .

The sections of TM are called vector fields on M. Concretely, a vector field X on M is a family of super
derivations XU : OM(U)→ OM(U) that is compatible with restrictions.

For each U ⊂M, we furnish TM(U) with a bracket operation, defined by [X ,Y ] f := X(Y f )−(−1)|X ||Y |Y (X f )
for all vector fields X and Y , and superfunctions f . This satisfies the graded Jacobi identity, allowing us to
view TM(U) as a Lie superalgebra.

Given a system of local coordinates (x;ξ ) on U ⊂M , we have basic even and odd vector fields ∂

∂xi
∈

Der0OM(U) and ∂

∂ξ j
∈ Der1OM(U) which act on superfunctions by

∂

∂xi
f = ∑

µ

∂ fµ(x1, . . . ,xm)

∂xi
ξ

µ ,

∂

∂ξ j
f = ∑

µ

µ j(−1)µ1+···+µ j−1 fµ(x1, . . . ,xm)ξ
µ1
1 . . .ξ

µ j−1
j−1 ξ

µ j+1
j+1 . . .ξ µn

n .

Analogously to the non-super setting, every supervector field admits a local description:

(2.3) X =
m

∑
i=1

Xi
∂

∂xi
+

n

∑
j=1

X j
∂

∂ξ j
,

where Xi,X j ∈ O(U). Naturally, for every point p ∈M, the tangent space TpM = TpM0⊕TpM1 of M at p
is defined to be the space of superderivations ϕ : OM,p→ R. For each p ∈U ⊂M, there is a natural mapping
TM(U)→ TpM sending a vector field X to its value Xp. It is important to note that unlike in the non-super
theory, a supervector field is not determined by its value at all points.

Let M and N be supermanifolds. Recall that a morphism of superringed spaces Φ : M →N is a pair
Φ = (φ ,φ ∗) consisting of a topological map and a morphism of sheaves. Unlike the scenario with a morphism
of ringed spaces, a morphism of superringed spaces isn’t determined by the topological map alone. In the
super context, the map φ ∗ : ON(N)→ φ∗OM(M) = O(φ−1(M)) acting on global sections determines the
morphism Φ.

Consider a morphism of supermanifolds Φ : M →N and a subset V ⊂ N. Define a vector field along a
morphism to be a morphism of supervector spaces

Y : ON(V )→ φ∗OM(V ) = OM(φ−1(V ))

such that the homogeneous components of Y satisfy

Y ( f g) = (Y f ) ·φ ∗(g)+(−1)|Y || f |φ ∗( f ) · (Y g)
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for all f ,g ∈ ON(V ). The set of such vector fields defines a sheaf, which we denote by TΦ. Any Y ∈TΦ(V )
can be uniquely written in local coordinates as

(2.4) Y =
m

∑
i=1

Yi ·
(

φ
∗ ◦ ∂

∂xi

)
+

n

∑
j=1

Y j ·
(

φ
∗ ◦ ∂

∂ξ j

)
,

where Yi,Y j ∈ φ∗OM(V ) = ON(φ
−1(V )).

Given a supermanifold morphism Φ : M →N , the differential or pushforward dΦ : TM(M)→TΦ(N) is
defined by the mapping X 7→ dΦ(X) := X ◦φ ∗. Locally, the differential of Φ at p ∈M is given by v 7→ v◦φ ∗

and denoted dΦp : TpM→ Tφ(p)N. Specifically, given a local coordinate system {x;ξ} on U ⊂ M and a
vector field X ∈TM(U), we compute

dΦ(X) = X ◦φ
∗ = ∑

i
X(φ ∗xi) ·φ ∗ ◦

∂

∂xi
+∑

j
X(φ ∗ξ j) ·φ ∗ ◦

∂

∂ξ j
.

We say that a supermanifold morphism Φ : M →N is a local superdiffeomorphism at a point p ∈M if dΦp

is bijective. If Φ is a local superdiffeomorphism for all p ∈M and its inverse is a supermanifold morphism,
then Φ is a superdiffeomorphism.

THEOREM 2.16 (Inverse Function Theorem). Let Φ : M →M be a morphism of supermanifolds, and let
p ∈M be such that Φ is a local superdiffeomorphism at p. Then, there exist charts U and V around p and
φ(p) respectively, such that φ(U)⊂V and φ |U : U →V is an isomorphism.

PROOF. This proof relies heavily on the classical inverse function theorem and can be found in [CCF11,
Proposition 5.1.1].

We end this section by briefly introducing immersions and submersions, noting that the differences to the
non-super theory are only minor. A detailed treatment of this theory can be found in [CCF11, Lei80, Var04].
Given a supermanifold morphism Φ : M →N , we say Φ is an immersion (resp. submersion) at p ∈M if
the differential dΦp is injective (resp. surjective).

2.6. Lie supergroups

This section introduces the theory of Lie supergroups. Similarly to the usual definition of a Lie group, we
can define a Lie supergroup as a group object in the category of supermanifolds. Alternatively, following
Kostant [Kos77], we can define a Lie supergroup by its underlying real Lie group and an associated Lie
superalgebra. We introduce both definitions and discuss their equivalence.

Throughout this section, we will make abundant use of the fact that a supermanifold morphism is determined
by its image on global sections. In the following, note that the supermanifold R0,0 is simply a point equipped
with the sheaf R.

For any supermanifold M , each point p ∈M defines an embedding p = (δp,δ
∗
p) of R0,0 into M , where we

define δ ∗p : OM(M)→R to be the evaluation map f 7→ f̃ (p). Define the constant map p̂ = (δ̂p, δ̂
∗
p) : M →M

as the composition of p : R0,0→M with the unique map from M to R0,0.

A Lie supergroup G is a real supermanifold with smooth multiplication, inversion and unit maps

µ = (m,m∗) : G×G→ G, ι = (i, i∗) : G→ G, e = (δe,δ
∗
e ) : R0,0→ G,
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such that the following commute:

G×G×G G×G

G×G G

µ×id

id×µ µ

µ

,

G×G

G G

G×G

idG

⟨idG,ê⟩ µ

⟨ê,idG⟩ µ

,

G×G

G G

G×G

ê

⟨ι ,idG⟩ µ

µ⟨idG,ι⟩

.

Here ⟨φ ,ψ⟩(·) = φ(·)×ψ(·) denotes the diagonal map. These diagrams amount to the usual group laws of
associativity, inverses and identity:

(i) µ ◦ (idG×µ) = µ ◦ (µ× idG),
(ii) µ ◦ ⟨idG, ι⟩= µ ◦ ⟨ι , idG⟩= ê, and

(iii) µ ◦ ⟨idG, ê⟩= µ ◦ ⟨ê, idG⟩.

It is important to remark that each of these diagrams corresponds to two diagrams: one for the topological
map, and one for the sheaf map. Considering only the topological maps, we see that the reduced manifold
GRed is a (non-super) Lie group.

Since morphisms of supermanifolds are determined by their image on global sections, we may equivalently
state (i) – (iii) as follows:

(a) (id⊗m∗)◦m∗ = (m∗⊗ id)◦m∗ as a map OG(G)→ OG(G)⊗OG(G)⊗OG(G),
(b) (id⊗δ ∗e )◦m∗ = (δ ∗e ⊗ id)◦m∗ = I as a map OG(G)→ OG(G), and
(c) mOG ◦ (id⊗ i∗)◦m∗ = mOG ◦ (i∗⊗ id)◦m∗ = δ ∗e as a map OG→ R.

REMARK 2.17. A technicality arises when considering this point of view: it is not the case that
OM×M(M×M) = OM(M)⊗OM(M). To get around this we take the completion of the tensor product, which
we denote by OM⊗OM(M).

Intuitively, we can translate definitions from Lie theory to the super setting by using (a) – (c) in place of the
traditional group laws. For instance, on a Lie group G, left-translation Lg : G→ G is given by h 7→ gh. More
abstractly, we may view left-translation as a map G∼= {g}×G ↪−→G×G m−→G by identifying G with {g}×G
and mapping this into G via multiplication. This adapts to the super setting well:

Given a Lie supergroup G, for each g ∈ G we define left and right-translations by g to be the supermanifold
morphisms Lg : G→ G and Rg : G→ G given by L∗g( f ) = (δ ∗g ⊗ I)(m∗ f ) and R∗g( f ) := (I ⊗ δ ∗g )(m

∗ f ),
respectively. As in the non-super case, Lg and Rg are superdiffeomorphisms whose inverses are given by
(Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 , respectively. Furthermore, we have the property that for any g,h ∈ G,

Lg ◦Lh = Lgh and Rg ◦Rh = Rhg [BSV91, Propositions 2.2 and 2.3].

To extend the concept of the Lie algebra of a Lie group to the super case, we need to define left-invariant
supervector fields. A (non-super) vector field is left-invariant if (dLg)h(Xh) = Xgh for all g∈G, or equivalently
if dLgX = X . This is the definition in the super case: a supervector field X ∈ TG(G) is left-invariant if
(I⊗X)◦m∗ = m∗ ◦X .

The Lie superalgebra of a Lie supergroup G, denoted by g, is the set of all left-invariant vector fields on G.
As in the non-super theory, g is a finite-dimensional vector superspace that we identify with the tangent space
at the identity of G. We give g the structure of a Lie superalgebra by equipping it with the supercommutator

[X ,Y ] := XY − (−1)|X ||Y |Y X .
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Expectedly, the even component g0 of g, is the Lie algebra of the underlying group GRed. We now have
two well understood objects associated with each Lie supergroup: the underlying Lie group, and the Lie
superalgebra. It turns out that this is enough to determine the Lie supergroup completely.

A super Harish-Chandra pair (sHCp) is a pair (GRed,g) consisting of a Lie group and a Lie superalgebra
such that

(i) g0 ∼= Lie(GRed), and
(ii) there exists an action Ad : GRed→ Aut(g) such that Ãd : GRed→ Aut(g0) is the usual adjoint action.

Furthermore, for all x ∈ g0, and Y ∈ g,

(dAd)(X)Y = adX Y =
d
dt

∣∣∣∣
t=0

Adexp(tX)Y = [X ,Y ].

The following result allows us to use either formulation of Lie supergroups without worry.

THEOREM 2.18. Any Lie supergroup G = (GRed,OG) defines a super Harish-Chandra pair (GRed,g) where
the adjoint action Ad : GRed → Aut(g) is given by Adg(X) = R∗g ◦ X ◦ R∗g−1 . There exists a one-to-one
correspondence{

Group objects in the category of
supermanifolds (GRed,OG)

}
←→

{
Super Harish-Chandra pairs

(GRed,g)

}
.

PROOF. For a complete proof of this result, see [CCF11, Theorem 7.4.5].

EXAMPLE 2.19. We will now give some important examples of Lie supergroups in terms of their super
Harish-Chandra pairs:

(i) The general linear supergroup GL(m|n) is the Lie supergroup associated to the sHCp

(GL(m)×GL(n),gl(m|n)) .

(ii) The special linear supergroup SL(m|n) is the subgroup of GL(m|n) with reduced group

SL(m|n)Red := {(A,B) ∈ GL(m)×GL(n) | detA = detB > 0} ∼= SL(m)×SL(n)×R,

and Lie superalgebra

sl(m|n) := {X ∈ gl(m|n) | strX = 0} .

(iii) The orthosymplectic supergroup Let V =V0⊕V1 be a complex vector superspace and ω : V ×V →C a
non-degenerate supersymmetric even bilinear form. Assume dimV0 = m and dimV1 = 2n for positive
integers m and n. The orthosymplectic superalgebra is defined to be

osp(m|2n)C :=
{

X ∈ gl(m|2n)C : ω(Xu,v)+(−1)|X ||u|ω(u,Xv) = 0 for all u,v ∈V
}
.

The compact real form of osp(m|2n)C is defined by

osp(m|2n)0 = so(2,R)⊕ sp(n)∼= so(2,R)⊕u(n,H), and

osp(m|2n)1 ∼=Hn.

Denote by SOSp(2|2n) the connected Lie supergroup with compact real form osp(2|2n) [GPRZ23,
Section 7.1].
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(iv) The special unitary supergroup SU(m|n) is the Lie supergroup with associated sHCp

(SU(m)×SU(n),su(m|n)) ,

where

su(m|n) :=
{

X =

(
A B
−iB∗ C

)∣∣∣∣A∗ =−A,C∗ =−C,strX = 0
}
.

2.7. Lie supergroup actions

In this section, we discuss Lie supergroup actions on supermanifolds. This gives us the required language to
discuss homogeneous supermanifolds.

Let G = (GRed,OG) be a Lie supergroup and M = (M,OM) be a supermanifold. G acts on M if there exists
a morphism Ψ = (ψ,ψ∗) : G×M →M such that

(i) Ψ◦ (idG×Ψ) = Ψ◦ (µ× idM) as maps G×G×M →M , and
(ii) Ψ◦ (ê× idM) = idM as maps M →M .

These conditions correspond to the familiar axioms: g · (h · x) = gh · x, and e · x = x. The triple (M,OM,Ψ) is
referred to as a G-supermanifold.

Alternatively, in the language of super Harish-Chandra pairs, an action of (GRed,g) on M is a pair (ρ, ρ̂)
consisting of a group homomorphism ρ : GRed×M →M and a Lie supergroup anti-homomorphism
ρ̂ : g→TM(M) such that

ρ̂(X)( f ) = (dρ)(X)( f ) =
d
dt

∣∣∣∣
t=0

(ρ ◦ exp(tX))∗ ( f )

for all f ∈ OM(M) and all X ∈ g.

If a (non-super) Lie group G acts on a smooth manifold M, then for any X ∈ Lie(G) and p ∈M, we can
define a vector field X̂ ∈ X(M) to be the infinitesimal generator of the induced flow of X

X̂p =
d
dt

∣∣∣∣
t=0

(pexp(tX)).

The vector field X̂ is known as the action field of X . This looks very similar to our ρ̂ map. In fact, the map
taking a vector field to its action field is an anti-homomorphism too! We draw attention to the fact that for
each g ∈ GRed, ρ(g) : M →M is a supermanifold morphism. Hence, to define an action (ρ, ρ̂) of a sHCp
on a supermanifold, we require two pieces of data:

(i) the image of global sections of OM under (ρ(g))∗ for all g ∈ GRed, and
(ii) the image of global sections of TM under ρ̂ .

The two given definitions of a supergroup action are equivalent. Any action Ψ : G×M →M gives rise to
an action (ρ, ρ̂) of the associated sHCp (GRed,g) on M with the following two maps:

(i) (ρ(g))∗ = (δg⊗ id)◦ψ∗ for all g ∈ GRed, and
(ii) ρ̂(X) = (X |e⊗ id)◦ψ∗ for all X ∈ g.

For the proof of the converse assertion, see [CCF11, Proposition 8.3.2].

EXAMPLE 2.20. The adjoint action AdG of a Lie supergroup G = (GRed,OG) on itself is defined by the
following action of the associated sHCp (GRed,g) on G:
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(i) (ρ(g))∗ = L∗g ◦R∗g−1 =: Ad∗g, and
(ii) ρ̂(X) = (X |e⊗ id)◦m∗−X

for all g ∈ GRed, X ∈ g.

2.8. Some basic representation theory

Here we present some basic representation theory, focusing on (non-super) Lie groups. Throughout this
section, let G be a Lie group.

A representation of a Lie group G on a vector space V over a field k is a homomorphism ρ : G→ GL(V )
given by g 7→ ρ(g) such that ρ(g1g2) = ρ(g1)ρ(g2) for all g1,g2 ∈ G. The dimension of a representation ρ

is the dimension of the vector space V .

A G-module is a vector space V equipped with an operation G×V →V given by (g,v) 7→ gv satisfying

(i) (ag+bh)v = a(gv)+b(hv), and
(ii) g(av+bw) = a(gv)+b(gw)

for all g,h ∈ G, a,b ∈ k and v,w,∈V .

Every representation ρ of G on V , defines a G-module. Indeed, for g ∈ G, ρ(g) ∈ GL(V ) acts on vectors via
ρ(g)(v) = gv. In fact, the converse holds too: an abstract G-module V defines a group action, which in turn
defines a representation.

Let V and W be vector spaces with representations ρ1 : G→ GL(V ) and ρ2 : G→ GL(W ). We say that a map
f : V →W intertwines ρ1 and ρ2 if f ◦ρ1 = ρ2 ◦ f . We say that the two representations or G-modules are
equivalent if there exists an intertwiner f : V →W .

Let ρ : G→ GL(V ) be a representation of G on V . Given a subspace U ⊂V , we say that U is G-invariant if
gU ⊂U , for all g ∈ G. Every representation ρ : G→ GL(V ) has at least two invariant subspaces: {0}, and V
itself. We say that a representation is irreducible if the only invariant subspaces are these two.

THEOREM 2.21 (Schur’s Lemma – Part 1). Let V and W be two irreducible representations of G, and let
f : V →W be an intertwiner. Then either f is bijective or f = 0.

PROOF. It is easy to see that ker f = {v ∈ V : f (v) = 0W} ⊂ V and im f = { f (v) : v ∈ V} ⊂W are
G-invariant. As the representations are irreducible, ker f is either {0} or V , and im f is either {0} or W .
If ker f = V , then im f = {0} and so f = 0. On the other hand, if ker f = {0} then im f = W and f is
bijective.

THEOREM 2.22 (Schur’s Lemma – Part 2). If V is an irreducible representation over C and f : V →V is an
intertwiner, then f = λ IdV .

PROOF. By the fundamental theorem of algebra, f has an eigenvalue λ ∈ C. Notice then that f −λ IdV

intertwines V , which is irreducible. Also, f −λ IdV is not bijective, and so by the above theorem, must be the
zero map. Hence, f = λ IdV .

Irreducible representations are the building blocks of all other representations. One can decompose any
representation into its irreducible components. To see this, we need the existence of an inner product.

THEOREM 2.23. [Arv03, Theorem 2.5] Let ρ : G→ GL(V ) be a representation of a compact group G. Then
there exists a G-invariant inner product ⟨·, ·⟩ on V .
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THEOREM 2.24. [Arv03, Theorem 2.6] Any finite-dimensional representation of a compact group is a direct
sum of irreducible representations.

PROOF. Let G be a compact Lie group and V a G-module. If V is irreducible we are done. Assume V
is not irreducible and let ⟨·, ·⟩ be a G-invariant inner product. As V is not irreducible, there exists a proper
subspace U ⊂V that is a non-trivial submodule. Consider U⊥; for any u ∈U and w ∈U⊥,

⟨gu,gw⟩= ⟨u,w⟩= 0.

We see U⊥ is G-invariant since
⟨gu,w⟩=

〈
u,g−1w

〉
= 0

for all g ∈ G,u ∈U,w ∈U⊥. Also, V =U⊕U⊥. Repeat this process inductively to obtain the result.

The decomposition obtained above is not always unique. We say that the summands Vi are monotypic if they
are pairwise inequivalent. It holds then that a monotypic decomposition is equivalent up to the ordering of
the summands.

23



24



CHAPTER 3

Riemannian supergeometry

The field of supergeometry revolves around the measurement of distances, angles, and volumes on ab-
stract supermanifolds. To address this, we introduce the concept of a Riemannian metric in the setting of
supermanifolds.

Since the choice of metric determines the manifold’s geometry, it is vital to understand when two metrics
give the ‘same’ geometry. This equivalence is known as isometry. We discuss geometric properties that are
preserved under isometry, one of the most pronounced of which is the curvature. We conclude the chapter by
discussing homogeneous superspaces.

3.1. Graded Riemannian metrics

Let M = (M,OM) be an (m,n)-dimensional supermanifold. A graded Riemannian metric is a non-degenerate
graded-symmetric even OM-linear morphism of sheaves g(·, ·) : TM⊗TM → OM. In this setting, the non-
degeneracy means that the map X 7→ g(X , ·) is an isomorphism. If M has a Riemannian metric g, we call
(M ,g) a Riemannian supermanifold.

For any point p ∈ M, g(·, ·) establishes a scalar superproduct ⟨·, ·⟩p on the tangent space TpM. However,
unlike the non-super theory, knowledge of the scalar product at every point does not determine the metric on
M in general. Despite this, we often write ⟨·, ·⟩ when we mean g(·, ·).

It is apparent that the symmetric scalar product ⟨·, ·⟩p,0 on TpMRed gives rise to a pseudo-Riemannian metric
on MRed. In contrast to Riemannian metrics, not all supermanifolds possess a graded Riemannian metric. In
fact, due to the symplectic nature of ⟨·, ·⟩1, only supermanifolds with an even-dimensional odd component
admit a graded Riemannian metric.

3.2. Vector bundles and connections

We now introduce the concept of vector bundles and locally free sheaves. This serves as a foundation for
establishing the definition of a connection on the tangent sheaf of a supermanifold.

Let M be a topological space. A real vector bundle of rank k over M is a topological space E and a surjective
map π : E→M such that two conditions hold:

(i) for every point p ∈M, the fibre π−1(p) =: Ep is endowed with the structure of a k-dimensional vector
space;

(ii) for every point p ∈ M, there exists a neighbourhood U ∋ p and a homeomorphism φ : U ×Rk →
π−1(U) (called a local trivialisation) such that (π ◦φ)(p,v) = p for all v∈Rk, and the map v 7→ φ(p,v)
is an isomorphism of Rk and π−1(p).

We refer to E as the total space, M as the base space, and π as the projection. We say that a section of
π : E→M is a continuous map σ : M→ E such that π ◦σ = IdM.
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EXAMPLE 3.1. The tangent bundle T M of a smooth manifold M is a vector bundle with the standard
projection map. The fibres are the tangent spaces of M, endowed with their natural vector space structure.
The sections of the projection map are the smooth vector fields on M. This language should feel familiar from
our discussion of sheaves in Section 2.3.

Let (X ,F ) be a ringed space. A sheaf of F -modules G is said to be free if G =
⊕n

i=1 F . We say that G
is locally free if there exists an open cover {Uα}α∈I of X such that the restriction G |Uα

is a free sheaf of
F |U -modules. If X is connected and n is constant over every point in X , then we say G is a locally free sheaf
of rank n.

EXAMPLE 3.2. Consider a vector bundle (E,π,M) of rank n over M. Take a point p ∈M and an open neigh-
bourhood U ⊂M containing p. Let Γ(E,U) denote the space of local sections, which are continuous maps
σ : U → E such that π|U ◦σ = IdU . This becomes a vector space when equipped with scalar multiplication
and pointwise addition. The mapping U → Γ(E,U) establishes a presheaf with regular function restriction,
and, through sheafification, forms a sheaf E . Let OM be the sheaf of continuous functions on M. It turns out
that E is a locally free sheaf of OM-modules.

To illustrate this, let σ ∈ E (U) and f ∈OM(U). Suppose σ(p) = (p,v) ∈ {p}×Rn and define the multipli-
cation f σ(p) = (p, f (p)v) ∈ {p}×Rn. Due to the local trivialisation π−1(p)∼=U ×Rn, it is evident that
f σ ∈ E (U), rendering E (U) an OM(U)-module. Furthermore, a continuous section U →U ×Rn can be
expressed as n continuous maps from U to R. This shows that

E (U)∼=
n⊕

i=1

OM(U),

demonstrating E ’s local freeness.

Conversely, it is possible to construct a distinct vector bundle of rank n from a locally free sheaf of OM-
modules with rank n. This correspondence motivates the definition of a supervector bundle, and consequently
the super tangent bundle. We say that a supervector bundle over M is a rank (p,q) locally free sheaf of
OM-modules on M .

EXAMPLE 3.3. Both the tangent sheaf TM and the sheaf of vector fields along a morphism TΦ are supervector
bundles. Equations (2.3) and (2.4) demonstrate their fulfilment of the locally free property.

Another important vector bundle on M is the cotangent bundle Ω1
M defined as the dual of the tangent bundle.

This duality is described by the map

⟨·, ·⟩ : TM⊗OM Ω
1
M → OM,

where ⟨uX ,vω⟩= (−1)|X ||v|uv⟨X ,ω⟩ for u,v ∈ OM. We define the differential of a function to be the map
d : OM →Ω1

M where ⟨X ,d f ⟩= X f .

In geometry, the concept of a connection is crucial as it allows us to make sense of parallel transport – a way
of connecting fibres of a vector bundle over nearby points.

A connection on a supervector bundle E over a supermanifold M is defined to be an even morphism of
sheaves

∇ : E →Ω
1
M⊗E

such that for all f ∈OM(M), and v ∈ E , ∇( f v) = d f ⊗v+ f ∇v. Then, by defining ⟨X ,α⊗ v⟩ := ⟨X ,α⟩v for
α ∈Ω1

M, we can use the connection to differentiate f v in the direction of X :

(3.1) ∇X f v = X f (v)+(−1)|X || f | f ∇X v,
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where the parity of ∇X v is |X |+ |v|. Consider a connection ∇ on the tangent bundle TM. We define the
torsion of ∇ by

T∇(X ,Y ) := ∇XY − (−1)|X ||Y |∇Y X− [X ,Y ].
This quantity measures the failure of the connection to be commutative. In some sense, it tells us how tangent
spaces twist along a curve during parallel transport.

In the context of a Riemannian supermanifold, we desire a connection on TM that interacts well with the
metric. If M is endowed with a graded Riemannian metric g, we say a connection ∇ metric-compatible if it
satisfies

X⟨Y,Z⟩= ⟨∇XY,Z⟩+(−1)|X ||Y |⟨Y,∇X Z⟩.

THEOREM 3.4 (Fundamental Theorem of Riemannian Geometry). On a Riemannian supermanifold (M ,g),
there exists a unique torsionless, metric compatible connection ∇, which is implicitly defined by

(3.2)
2⟨∇XY,Z⟩= X⟨Y,Z⟩− (−1)|Z|(|X |+|Y |)Z⟨X ,Y ⟩+(−1)|X |(|Y |+|Z|)Y ⟨Z,X⟩

+ ⟨[X ,Y ],Z⟩− (−1)|X |(|Y |+|Z|)⟨[Y,Z],X⟩+(−1)|Z|(|X |+|Y |)⟨[Z,X ],Y ⟩.
We call ∇ the Levi-Civita connection on M .

PROOF. Apart from the extra signs, the proof is exactly as in [Lee18, Theorem 5.10].

If we consider purely even vector fields in (3.2), we arrive at Koszul’s formula, thus defining the standard
Levi-Civita connection on (MRed,g0). Here, g0 is the pseudo-Riemannian metric obtained by restricting g to
the even tangent spaces.

3.3. Curvature and isometries

In geometry, we often ask if two objects are the same or not. One approach to answering this question is to
look for local invariants. These are quantities that remain the same under geometric transformations, such as
a rotation or translation. For instance, the number of angles and sides of a polygon are local invariants.

Within Riemannian geometry, local invariants play a pivotal role in demonstrating that two manifodls aren’t
locally isometric – one cannot be transformed into the other without altering its underlying structure. In this
section, we explore a fundamental invariant: curvature.

3.3.1. Curvature. Fix ∇ to be the Levi-Civita connection on a supermanifold M . The curvature of ∇ is
defined to be the map R : TM(M)×TM(M)×TM(M)→TM(M) given by

(3.3) R(X ,Y )Z := [∇X ,∇Y ]Z−∇[X ,Y ]Z.

We often find that the information encoded in the Riemannian curvature is more conveniently represented
using the Riemann curvature tensor, a (0,4)-tensor field defined by Rm(X ,Y,Z,W ) := ⟨R(X ,Y )Z,W ⟩. The
curvature tensor possesses several symmetries.

PROPOSITION 3.5 (Symmetries of the Curvature Tensor). Let (M ,g) be a Riemannian supermanifold
equipped with the Levi-Civita connection. The Riemann curvature tensor Rm has the following symmetries
for all vector fields X ,Y,Z,W ∈TM(M):

(i) −Rm(X ,Y,Z,W ) = (−1)|X ||Y |Rm(Y,X ,Z,W ),
(ii) −Rm(X ,Y,Z,W ) = (−1)|Z||W |Rm(Y,X ,W,Z),

(iii) Rm(X ,Y,Z,W ) = (−1)(|X |+|Y |)(|Z|+|W |)Rm(Z,W,X ,Y ), and
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(iv) Rm(X ,Y,Z,W )+(−1)|Z|(|X |+|Y |)Rm(Z,X ,Y,W )+(−1)|X |(|Y |+|Z|)Rm(Y,Z,X ,W ) = 0.

PROOF. We only prove (i) to demonstrate how the argument in [Lee18, Proposition 7.12] adapts to the
extra signs. Indeed,

−Rm(X ,Y,Z,W ) =−⟨R(X ,Y )Z,W ⟩

=−
〈

∇X ∇Y Z− (−1)|X ||Y |∇Y ∇X Z−∇[X ,Y ]Z,W
〉

=−
〈

∇X ∇Y Z− (−1)|X ||Y |∇Y ∇X Z +(−1)|X ||Y |∇[Y,Z]Z,W
〉

= (−1)|X ||Y | ⟨R(Y,X)Z,W ⟩

= (−1)|X ||Y |Rm(Y,X ,Z,W ).

Computing the Riemann curvature tensor is often a challenging task due to its wealth of information. This
complexity prompts us to explore alternative constructions that capture the tensor’s essence while being
simpler to compute. One such tensor that has been studied extensively is the (0,2)-tensor known as the Ricci
tensor and denoted by Ric. For vector fields X and Y , we define

(3.4) Ric(X ,Y ) = str(Z 7→ (−1)|Z||Y |R(X ,Z)Y )

where str is the supertrace from Section 2.1. The Ricci curvature exhibits graded symmetry: for all vector
fields X ,Y , Ric(X ,Y ) = (−1)|X ||Y |Ric(Y,X). Taking the supertrace of the Ricci tensor, we obtain the scalar
curvature S.

We often also consider the Ricci endomorphism, a (1,1)-tensor denoted by ric : TM →TM and defined by

Ric(g)(·, ·) = ⟨ric(·), ·⟩ .

3.3.2. Isometries and the isometry group. Let (M ,g1) and (N ,g2) be Riemannian supermanifolds.
We say that a diffeomorphism Φ : M →N is an isometry if it respects the metric. In other words, for vector
fields X ,Y ∈TM(M),

φ
∗ ⟨dΦ(X),dΦ(Y )⟩g2

= φ
∗ 〈(φ−1)∗ ◦X ◦φ

∗,(φ−1)∗ ◦Y ◦φ
∗〉

g2
= ⟨X ,Y ⟩g1

.

If Φ : M →N is an isometry, we find

dΦ(∇XY ) = ∇dΦX dΦY

for vector fields dΦX ,dΦY , and dΦ(∇XY ) on N . Although vector fields and scalar products aren’t deter-
mined by their local values as in the non-super theory, the following remains true in both settings.

PROPOSITION 3.6. [Goe08, Proposition 6] An isometry of a connected Riemannian supermanifold M is
determined by its value and its derivative at one point.

The set of isometries I(M) of a Riemannian supermanifold M forms a supergroup which we call the isometry
group. The Myers-Steenrod theorem establishes that the isometry group of a (non-super) Riemannian
manifold possesses the structure of a Lie group. This remains the case for supermanifolds. To demonstrate
this, we construct a super Harish-Chandra pair whose reduced group corresponds to the manifold’s group of
isometries.
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Denote by I(M)Red the group of isometries of M (distinct from I(MRed), the isometry group of the reduced
manifold MRed). It can be shown that I(M)Red has the structure of a Lie group [Goe08]. Recall that for a
super Harish-Chandra pair (G,g), we require Lie(GRed) = g0.

In the non-super theory, the Lie algebra of the isometry group of a manifold consists in a class of distinguished
vector fields. We now define their super analogue: a graded Killing vector field on M is a vector field X such
that

X ⟨Y,Z⟩= ⟨[X ,Y ],Z⟩+(−1)|X ||Y | ⟨Y, [X ,Z]⟩
for all vector fields Y and Z. The vector space of all graded Killing fields forms a Lie superalgebra when
equipped with the negative of the bracket induced by the Lie superalgebra of all vector fields.

It turns out that the left-invariant vector fields of I(M)Red (the elements of its Lie algebra) are exactly the
even Killing vector fields [Goe08]. Denote by g the Lie superalgebra of graded Killing vector fields on M .
For each X ∈ g and an isometry ϕ ∈ I(M)Red, there is an action

Adϕ X := dϕ(X) = (ϕ−1)∗ ◦X ◦ϕ
∗

which, on g0, coincides with the action of I(M)Red on its Lie algebra. Thus, (I(M)Red,g) forms the super
Harish-Chandra pair associated with the isometry group of M .

In the classical theory, a pseudo-Riemannian metric ⟨·, ·⟩ on a Lie group G is considered left-invariant if the
left-translations are isometries. In other words,

⟨(dLg)X ,(dLg)Y ⟩= ⟨X ,Y ⟩
holds for all X ,Y ∈ g= Lie(G) and all g ∈G. Equivalently, a metric is left-invariant if for all X ,Y ∈ g, ⟨X ,Y ⟩
is constant on G. We adopt this as the definition of a left-invariant metric on a Lie supergroup. We can
similarly define right-invariant and bi-invariant metrics. Left-invariant metrics are distinguished as they
correspond to scalar superproducts on the Lie algebra. Indeed, for X ,Y ∈ g, since ⟨X ,Y ⟩ is a constant function
on G, we can linearly extend the metric with respect to superfunctions on G.

A scalar superproduct ⟨·, ·⟩ is AdGRed-invariant if

⟨Adg X ,AdgY ⟩= ⟨X ,Y ⟩
for all X ,Y ∈ g and all g ∈ GRed. It is adg-invariant if

⟨[X ,Y ],Z⟩+(−1)|X ||Y | ⟨Y, [X ,Z]⟩= 0

for all X ,Y,Z ∈ g. We call a scalar superproduct AdG-invariant if it is both AdGRed-invariant and adg-invariant.

THEOREM 3.7. [Goe08, Theorem 2] Let G be a Lie supergroup with a left-invariant graded Riemannian
metric ⟨·, ·⟩. The metric is bi-invariant if and only if ⟨·, ·⟩ is AdG-invariant.

In the classical theory, it is known that for any representation of a compact Lie group G, there exists a
G-invariant inner product on V . A G-invariant inner product of particular interest is the one induced by the
adjoint representation, known as the Killing form of G.

Let g be a finite-dimensional Lie superalgebra. Recall that each element X ∈ g defines the adjoint endomor-
phism adX : g→ g. The Killing form of g is the map B : g×g→ R

B(X ,Y ) := str(adX ◦adY ),

for all X ,Y ∈ g. The Killing form is an even, graded-symmetric, adg-invariant bilinear form. In contrast to
the non-super setting, B is not always non-degenerate, as we now see.

EXAMPLE 3.8. The following examples can be found in [Goe08]:

29



(i) For the Lie superalgebra sl(m|n), the killing form is given by

B(X ,Y ) = 2(n−m)str(XY ).

It is non-degenerate unless n = m.
(ii) For the Lie superalgebra osp(m|2n), the Killing form is

B(X ,Y ) = (m−2n−2)str(XY ).

It is non-degenerate unless m = 2n+2.

3.4. Homogeneous superspaces

In this section, we introduce the concept of homogeneous supermanifolds. In the non-super setting, a
homogeneous space, loosely, ‘looks the same’ everywhere; any two points are related by some transformation.
This property significantly simplifies the analysis and manipulation of these spaces, making them particularly
‘nice’ to study.

Let G be a (non-super) Lie group. We say that a smooth manifold M is homogeneous if G acts transitively
on M. Equivalently, we can consider a G-homogeneous space M to be the quotient space G/H, where H is
the isotropy group of G at the identity. For a comprehensive introduction to the geometry of homogeneous
spaces, we highly recommend the outstanding book by Arvanitoyeorgos [Arv03].

Let G = (GRed,OG) be a Lie supergroup and consider (H,h) a closed Lie sub-supergroup of G. Denote the
canonical projection maps by

π : GRed→ GRed/HRed, pr : G×K→ G.

Additionally, let RH : G×H → G be the right action of H on G, where H acts by multiplication. We
understand that GRed/HRed forms a smooth manifold. We will shortly see that an analogous result holds for
G/H in the super setting.

For each open set U ⊂ GRed/HRed, define the subalgebra of RH-invariant superfunctions

OG/H(U) := { f ∈ OG(π
−1(U)) : R∗H f = pr∗ f} ⊂ OG(π

−1(U)).

Let OG/H denote the sheaf defined by the mapping U 7→ OG/H(U). Then, G/H := (GRed/HRed,OG/H)
is a supermanifold [Kos77, Theorem 3.9]. The inclusion map establishes a morphism of sheaves which
subsequently defines the morphism of supermanifolds G→ G/H. Consider the map TeG→ ToG/H given
by X 7→ XH. This is a surjective morphism of supervector spaces with kernel h. Accordingly, we make the
identification

ToG/H ∼= g/h,

where o := H represents the identity coset. Let Ψ = (ψ,ψ∗) be the action of a Lie supergroup G on a
supermanifold M . Each point p ∈M defines a closed Lie sub-supergroup Gp called the isotropy group of G
at p. The isotropy group is defined by the sHCp ((GRed)p,gp), where (GRed)p := {h ∈ GRed : h(p) = p} is
the usual isotropy group and gp := {X ∈ g : X̂ |p = 0}. In other words, gp is the left-invariant vector fields on
G whose infinitesimal action at p is trivial. The adjoint action AdGRed : (GRed)p→ GL(gp) is the restriction
of the adjoint action Ad : GRed→ GL(g).

The action of Gp on TpM defines a linear representation AdG/Gp : Gp→ GL(TpM) of the isotropy group at
p on the tangent space TpM. This representation is known as the isotropy representation of M. The map
AdG/Gp is defined by two maps:

(i) (GRed)p→ GL(TpM), given by h 7→ (dψ(h))p, and
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(ii) gp→ gl(TpM), given by X · v =−[X̂ ,v]|p = (−1)|X ||v|v◦ X̂ .

For each point p ∈ M, we define a submanifold G · p of M referred to as the orbit of G at p. The or-
bit GRed · p = {g · p : g ∈ GRed} obtains the structure of a smooth manifold via the canonical mapping
j : GRed/(GRed)p → GRed · p. This defines a sheaf j∗OG/Gp on G · p by the map U 7→ j∗OG/Gp(U) =

OG/Gp( j−1(U)). Thus,
G · p := (GRed · p, j∗OG/Gp)

is a supermanifold. Recall that p̂ = (δ̂p, δ̂
∗
p) : M →M denotes the constant map at p. For each point p ∈M,

the orbit map of p is defined as a morphism of supermanifolds Ψp = (ψp,ψ
∗
p) : G→M given by Ψ◦⟨idG, p̂⟩.

This map satisfies Ψp ◦Rg = Ψg·p and ψ(g)◦Ψp = Ψp ◦Lg for every g ∈ G.

The action Ψ is deemed transitive if the underlying action of GRed on M is transitive and the map g→ TpM
defined as X 7→ X |e ◦Ψ∗p = X̂ |p is surjective.

We say that a supermanifold is G-homogeneous if there exists a Lie supergroup G acting transitively on
it. A Riemannian supermanifold M is homogeneous if its isometry group I(M) acts transitively. If M
is G-homogeneous, then the orbit map, Ψp : G/Gp →M taking the coset gGp to ψp(g) ∈ G · p, is a
diffeomorphism onto its image. Hence, a Riemannian homogeneous supermanifold M is diffeomorphic to a
homogeneous superspace G/H, where G⊂ I(M) is closed and H = Gp for some p ∈M.

In the standard theory, a Riemannian metric on a G-homogeneous space is labelled G-invariant if each g ∈ G
acts by isometry. We extend this definition to graded Riemannian metrics on G-homogeneous supermanifolds:
we say a graded Riemannian metric is G-invariant if each g ∈ GRed acts by isometry, and the image of
g→TM(M) lies in the subalgebra of graded Killing fields.

The following result gives a characterisation of G-invariant graded Riemannian metrics, enabling us to operate
at the Lie superalgebra level rather than the group level.

THEOREM 3.9. [Goe08, Theorem 3] Let M be a G-homogeneous supermanifold, and fix p ∈MRed. There is
a 1−1 correspondence between G-invariant graded Riemannian metrics on M and AdGp-invariant scalar
superproducts on g/gp ∼= TpM.

We say that a homogeneous supermanifold G/H is reductive if the Lie superalgebra g of G admits a
decomposition

g= h⊕m

such that Adhm⊂m for every h ∈ HRed. In this case, we say that m is AdH-invariant. If G/H is reductive,
we see that m∼= To(G/H).

PROPOSITION 3.10. The isotropy representation of G/H is equivalent to the adjoint representation of H in
m∼= g/gp.

PROOF. We need to show that AdG(h)Y = AdG/H(h)Y for h ∈ H and Y ∈ m. Indeed, for any g ∈
(GRed)p = H and any X ∈ g, we compute

(AdG(g)X)e ◦ψ
∗
p = Xe ◦L∗g ◦R∗g−1 ◦ψ

∗
p = Xe ◦L∗g ◦ψ

∗
p = Xe ◦ψ

∗
p ◦ψ(g)∗ = dψ(g)(Xe ◦ψ

∗
p).

The equivalence of representations at the level of Lie superalgebras can be seen via the relationship

[X ,Y ]e ◦ψ
∗
p =−

[
(Ye⊗ I)◦ψ

∗,Xe ◦ψ
∗
p
]
.
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CHAPTER 4

Ricci flow in the non-super setting

The Ricci flow is a geometric flow that describes the evolution of a Riemannian metric over time. We begin
by discussing the motivation behind the Ricci flow, and exploring some classical results in the field. We then
introduce the homogeneous Ricci flow, reviewing the main questions and recent progress in the field. At the
end of the chapter, we narrow our focus to the super setting, explicitly computing the curvature and analysing
the Ricci flow equation for the Lie supergroup SL(1|1).

4.1. An introduction to Ricci flow

Let (M,g0) be a Riemannian manifold. The Ricci flow equation is the second-order weakly parabolic partial
differential equation

∂

∂ t
g(t) =−2Ric(g(t)), g(0) = g0,

where {g(t)}t∈[0,T ) is a one-parameter family of Riemannian metrics. It is not always possible to deform
the metric g(t) indefinitely. We say that the time T is a singularity in the Ricci flow if the flow cannot be
smoothly extended past T . We will make this definition more precise shortly. For now, we are interested in
techniques to overcome singularities.

Suppose that g(t) is a Ricci flow for t ∈ [0,T ). We know that the Ricci tensor is scaling invariant; let us now
see how the flow changes when scaling the metric. Define g̃(x, t) := λg

(
x, t

λ

)
for some λ > 0 and t ∈ [0,λT ).

Then,
∂

∂ t
g̃(x, t) =

∂

∂ t
g
(

x,
t
λ

)
=−2Ricg

( t
λ

)
(x) =−2Ric g̃(t)(x).

The scaled metric g̃ is also a Ricci flow. This fact turns out to be quite useful in analysing singularities of
the flow. For example, in the case the manifold shrinks to a point, as it does in Figure 1, one can rescale the
metric to keep the volume constant over time. There are more technical ways to overcome singularities such
as ‘surgery’, but this is beyond the scope of our project.

4.1.1. Variational formula. Let h be a symmetric (0,2)-tensor. In this section we will compute
the variation of a few quantities under some deformation of the metric tensor ∂

∂ t gi j = hi j. Upon setting
h =−2Ricg, we derive the Ricci flow equation. Consequently, the following results provide insights into the
evolution of these quantities under the Ricci flow. In the following, we will use the fact that computations for
tensors hold coordinate invariantly.

LEMMA 4.1. [Bes87, Theorem 1.174] Let (M,g) be a Riemannian manifold and h a symmetric (0,2)-tensor.
Then, the differentials at g, in the direction h, of various quantities are given by the following expressions:

(i) The inverse of the metric g−1

∂

∂ t
gi j =−gikg jlhkl;
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(ii) the Levi-Civita connection

∂

∂ t
Γ

k
i j =

1
2

gkl(∇ih jl +∇ jhil−∇lhi j);

(iii) the Riemann curvature tensor

∂

∂ t
Rl

i jk =
1
2

gl p (
∇i∇ jhkp +∇i∇kh jp−∇i∇ph jk−∇ j∇ihkp−∇ j∇khip +∇ j∇phik

)
;

(iv) the Ricci tensor

∂

∂ t
R jk =

1
2

gpq (
∇q∇ jhkp +∇q∇kh jp−∇q∇ph jk−∇ j∇khqp

)
;

(v) the scalar curvature
∂

∂ t
S =−∆ trg h+∇

p
∇

qhpq−⟨h,Ric⟩ ;

(vi) the volume element dµ

∂

∂ t
dµ =

1
2

(
gi j ∂

∂ t
gi j

)
=

trg h
2

dµ.

PROOF. We only prove the first two as the general style of proof remains the same.

(i) By definition, gikgkl = δ i
l . Considering the time derivative ∂

∂ t gikgkl , we have(
∂

∂ t
gik
)

gkl +gik ∂

∂ t
gkl =

(
∂

∂ t
gik
)

gkl +gikhkl = 0.

Solving for ∂

∂ t gi j we find

∂

∂ t
gi j =

(
∂

∂ t
gik
)

gklg jl =−gikg jlhkl.

(ii) Recall the formula for the Christoffel symbols in some local coordinate system {xi}:

Γ
k
i j =

1
2

gkl
(

∂

∂xi
g jl +

∂

∂x j
gil−

∂

∂xl
gi j

)
.

Hence,

∂

∂ t
Γ

k
i j =

1
2

∂

∂ t
gkl
(

∂

∂xi
g jl +

∂

∂x j
gil−

∂

∂xl
gi j

)
+

1
2

gkl
(

∂

∂xi

∂

∂ t
g jl +

∂

∂x j

∂

∂ t
gil−

∂

∂ l
∂

∂ t
gi j

)
.

Choosing geodesic coordinates about a point p ∈ M, we have Γk
i j(p) = 0. Subsequently we find

∂

∂xi
A jk = ∇iA jk for any tensor A; in particular, ∂

∂xi
g jk = 0 for all i, j,k. Thus,

∂

∂ t
Γ

k
i j(p) =

1
2

gkl
(

∇i
∂

∂ t
g jl +∇ j

∂

∂ t
gil−∇l

∂

∂ t
gi j

)
(p).

Importantly, the evolution of the scalar curvature has an invariant formula:

(4.1)
∂

∂ t
S =−∆ trg h+div(divh)−⟨h,Ric⟩ .
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4.2. Homogeneous Ricci flow

In this section, we describe the current literature on the homogeneous Ricci flow. Let G be a compact Lie
group and H a closed subgroup of G. Denote by h ⊂ g the Lie algebras of G and H. Suppose that G acts
almost effectively and consider the homogeneous space G/H.

4.2.1. The Setup. Fix a bi-invariant Riemannian metric on G. Let Q denote the induced AdG-invariant
inner product on g. The Q-orthogonal complement of h in g is an AdH-invariant subspace, which we denote
by m. Let o be the identity coset eH in G/H. We then identify m with the tangent space To(G/H), where
H acts on m via the adjoint representation AdH . Every G-invariant metric on G/H is determined by an
AdH-invariant scalar product on g/h.

Consider a Q-orthogonal AdH-invariant decomposition

(4.2) m=m1⊕ . . .⊕ms

In general, this decomposition is not unique unless the summands mi are irreducible and inequivalent.

Given a G-invariant Riemannian metric g on M, it is always possible to choose a decomposition of the form
(4.2) such that g is diagonal with repsect to Q.

PROPOSITION 4.2. The metric respects the splitting of m into s irreducible, inequivalent summands; that is

(4.3) ⟨·, ·⟩= x1 Q|m1
⊕ . . .⊕ xsQ|ms

,

where xi ∈ R\{0} for all 1≤ i≤ s.

REMARK 4.3. Since we are dealing with Riemannian metrics, we can assume that xi > 0 for all i.

PROOF. We aim to apply Schur’s lemma to the endomorphism G : m→m defined by

Q(G(X),Y ) = g(X ,Y ).

Indeed, if we can show that G intertwines the isotropy representation (dLh)o, where h ∈ H and o = eH, then
Schur’s lemma implies that G|mi

= xiId|mi
as required. By the left-invariance of g, we find

Q(G(X),Y ) = g(X ,Y ) = g((dLh)oX ,(dLh)oY ) = Q(G((dLh)oX),(dLh)oY )

for all X and Y . Hence,

Q(G(X),Y ) = Q(G((dLh)oX),(dLh)oY ) = Q((dLh)
T
o G((dLh)oX),Y ).

By orthogonality, (dLh)
T
o = (dLh)

−1
o and we can conclude that

(dLh)oG(X) = G((dLh)oX).

Hence, G is an intertwiner.

PROPOSITION 4.4. The Ricci tensor respects the splitting of m into s irreducible, inequivalent summands:

Ric(g) = r1x1 Q|m1
⊕ . . .⊕ rsxs Q|ms

.

PROOF. We again aim to apply Schur’s lemma, now to the Ricci endomorphism:

g(ric(·), ·) = Ric(g)(·, ·).

Since left-translation Lh is a diffeomorphism and the Ricci tensor is isometry invariant,

g(ric(d(Lh)oX),d(Lh)oY ) = Ric(g)(d(Lh)oX ,d(Lh)oY ) = (Lh)
∗Ric(g)(X ,Y )
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= (Lh)
∗g(ric(X),Y ) = g(d(Lh)o ric(X),d(Lh)oY ),

for all X ,Y . That is, ric(·) intertwines the isotropy representation. Schur’s lemma then implies
Ric(g) = ∑

s
i=1 ri g|mi

. Combining this with the previous proposition gives the required expression.

PROPOSITION 4.5. The square norm of the Riemann curvature tensor respects the splitting of the metric:

|Rm(g(t))|2g(t) =
s

∑
i=1
|Rm(g(t)|mi)|

2
g(t)|mi

=
s

∑
i=1

1
xi(t)2 |Rm(Q|mi)|

2
Q|mi

.

PROOF. The proof is similar to that of Propositions 4.2 and 4.4.

Let B denote the Killing form on the Lie algebra g. As each mi is irreducible, there exists bi ≥ 0 such that

B|mi =−biQ|mi .

We define the structure constants
[i jk] = ∑

α,β ,γ

Q([eα ,eβ ],eγ)
2,

where {eα},{eβ}, and {eγ} are Q-orthonormal bases of mi,m j, and mk. It is clear that [i jk] is symmetric in
all three indices since Q is adg-invariant.

THEOREM 4.6. Let G/H be a compact homogeneous space with decomposition g= h⊕m1⊕ . . .⊕ms. Define
a G-invariant metric g on G/H as in (4.3). The Ricci curvature tensor of g on each mi is given by

rixi =
bi

2
− 1

2di

s

∑
j,k=1

xk

x j
[i jk]+

1
4di

s

∑
j,k=1

x2
i

x jxk
[i jk],

where di = dimmi.

PROOF. This is a lengthy computation and can be found in [PR19, Lemma 3.3].

The scalar curvature is given by the trace of the Ricci tensor: S(g) = ∑
s
i=1 ridi. In light of the above theorem,

a solution g(t) to the Ricci flow equation on G/H must satisfy the system of ODEs

∂

∂ t
xi(t) =−2rixi(t),

where xi(t)> 0 for 1≤ i≤ s.

4.2.2. Singularities – Type I and Type II. Let (M,g) be a closed Riemannian manifold. A solution
g(t) to the Ricci flow on M× [0,∞) is a maximal solution if |Rm(g(t))(x, t)| is unbounded as t→ T . We call
the maximal solution singular if, in addition, T < ∞. Singular solutions to the Ricci flow can be classified
into two types. A solution develops a type I singularity at t = T if

(i) T < ∞,

(ii) sup
t∈[0,T )

(
sup
p∈M
|Rm(g(t))|g(t)(p, t)

)
= ∞, and

(iii) sup
t∈[0,T )

(
(T − t) sup

p∈M
|Rm(g(t))|g(t)(p, t)

)
< ∞.
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A solution develops a type II singularity at t = T if, in addition to (i) and (ii),

sup
t∈[0,T )

(
(T − t) sup

p∈M
|Rm(g(t))|g(t)(p, t)

)
= ∞.

REMARK 4.7. As we mainly deal with homogeneous spaces, we can ignore the supremum over M in the
above definitions.

4.2.3. A Different Type of Convergence. The goal of this section is to understand what it means for
a sequence of Riemannian manifolds to converge. We focus on the weakest type of convergence available:
Gromov-Hausdorff convergence. The Gromov-Hausdorff distance is a way of measuring distances between
metric spaces; in essence, it measures how far two compact metric spaces are from being isometric. Let
(X ,dX) and (Y,dY ) be two metric spaces. We say that there exists an ε-approximation between X and Y if,
for S⊂ X×Y , two conditions hold:

(i) the projections pr1 : S→ X and pr2 : S→ Y are onto;
(ii) for all (x1,y1),(x2,y2) ∈ S, |dX(x1,x2)−dY (y1,y2)|< ε.

If there exists an ε-approximation between X and Y , we write X ∼ε Y . We then define the Gromov-Hausdorff
distance between X and Y to be

dG−H(X ,Y ) = inf{ε : X ∼ε Y}.
If no such ε exists then dG−H(X ,Y ) = ∞. Given a sequence of metric spaces {(Xn,dXn)}n, we say that
(Xn,dXn)→ (X ,d) in the Gromov-Hausdorff topology if dG−H(Xn,X)→ 0 as n→ ∞. Buzano proved the
following useful result.

THEOREM 4.8. [Buz14, Proposition 2.6] Let G/H be a compact and connected homogeneous space. Suppose
there exists an intermediate Lie group K, with H < K < G. Let g,h,k be the Lie algebras of G,H and
K respectively. Suppose k is AdH-invariant and that every G-invariant Riemannian metric on G/H is a
submersion metric

K/H→ G/H→ G/K.

Then, if the fibre K/H shrinks to a point, G/H converges in the Gromov-Hausdorff sense to G/K.

4.2.4. The story so far. Einstein metrics are of great interest; they are the metrics of constant Ricci
curvature. A natural question is whether a manifold admits an Einstein metric, and if so, is it unique. In the
homogeneous setting, this problem has been studied in depth.

Wang and Ziller [WZ86] study the existence and non-existence of homogeneous Einstein metrics by consid-
ering a variational interpretation. More precisely, let M denote the set of Riemannian metrics on a compact
manifold M. The total scalar curvature functional E : M → R is given by

E (g) =
∫

M
S(g)dvolg,

where volg =
√∣∣det(gi j)

∣∣. This is homogeneous of degree n
2 , and so we often restrict to the space of volume

one metrics M1.

PROPOSITION 4.9. [Bes87, Proposition 4.17] Given a compact Riemannian manifold (M,g), the functional
E has first variation given by

dEg(h) =
∫

M

〈
S
2

g−Ricg,h
〉

g
dvolg,

for some (0,2)-tensor h.
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PROOF. Using 4.1,

dEg(h) =
∫

M
∆g trg h+div(divh)−⟨Ricg,h⟩+ S

2
trg hdvolg.

Stokes’ theorem then implies

dEg(h) =
∫

M

S
2
⟨g,h⟩−⟨Ricg,h⟩dvolg =

∫
M

〈
S
2

g−Ricg,h
〉

dvolg.

As a consequence of the above computation, we see that critical points of E are Einstein metrics of volume 1
with constant S

2 . Wang and Ziller use this characterisation to prove the following result.

THEOREM 4.10. [WZ86, Theorem 1] Let G be a connected compact Lie group and H a connected closed
subgroup such that G/H is effective. Then, the scalar curvature functional E on the set of G-invariant metrics
with volume 1 is bounded from above and proper if and only if H is a maximal connected subgroup of G. For
such a G/H, E assumes its global maximum at a G-invariant Einstein metric.

Further existence theorems for homogeneous Einstein metrics will involve searching for saddle points of E
when it is unbounded from above and below. Böhm, Wang and Ziller [BWZ04] consider this.

The study of Einstein metrics is intimately linked to the Ricci flow. The long time behaviour of homogeneous
Ricci flows has been studied by numerous authors. Buzano [Buz14] completely classifies the behaviour for
compact homogeneous spaces G/H where the isotropy representation decomposes into two inequivalent,
irreducible summands: m=m1⊕m2. It was shown that a Type I singularity is always reached in finite time.
Depending on the subgroup H, Buzano found different behaviour as the singular time was approached. In
the case where there exists an intermediate subgroup H < K < G such that its Lie algebra is AdH-invariant,
Buzano showed that either G/H would shrink to a point or converge in the Gromov-Hausdorff topology to
G/K.

Extending these results, Böhm proved the following.

THEOREM 4.11. [Böh15, Theorem 1] A homogeneous Ricci flow with finite extinction time develops a Type I
singularity.

THEOREM 4.12. [Böh15, Theorem 2] Let Mn be a compact homogeneous space not diffeomorphic to the
torus T n. Then any homogeneous Ricci flow solution has finite extinction time.

THEOREM 4.13. [Böh15, Theorem 3] Let Mn = G/H be a compact homogeneous space not diffeomorphic
to the torus T n. Suppose that the isotropy representation decomposes into pairwise inequivalent summands.
Then for any homogeneous Ricci flow on G/H there exists a compact intermediate subgroup K, such that
E∞ = K/H.

In the above, E∞ is the compact homogeneous space appearing in the limit.

4.3. A motivating example in the super setting

In this section, we study the Ricci flow of left-invariant metrics on the Lie supergroup SL(1|1). The Lie
supergroup SL(1|1) has the associated sHCp (SL(1)×SL(1)×R,sl(1|1)). Let

X =

(
1 0
0 1

)
, Y =

(
0 1
0 0

)
, Z =

(
0 0
1 0

)
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denote the standard basis of sl(1|1). These basis elements satisfy the following commutation relations:

[X ,Y ] = [X ,Z] = 0, [Y,Z] = X .

Equip SL(1|1) with a left-invariant, graded Riemannian metric g. This induces a scalar superproduct ⟨·, ·⟩ on
sl(1|1). Since g is symmetric on SL(1|1)0 and symplectic on SL(1|1)1, we may assume g takes the form

g =

x11 x12 x13
x21 0 x23
x31 −x23 0

 ,

where xi j ∈ R\{0} for all i, j.

LEMMA 4.14. There exists a linear transformation T : sl(1|1)→ sl(1|1) that preserves the bracket relations
and is such that g takes the form

(4.4)

x1 0 0
0 0 x2
0 −x2 0

 ,

where x1,x2 ∈ R\{0}.

PROOF. Define S by the change of basis that maps {X ,Y,Z} to
{

X ,Y − x21
x11

X ,Z− x31
x11

X
}
=: {X1,X2,X3}.

Under this change of basis, g becomes

g̃ := PT gP =

x11 x12− x21 x13− x31
0 − x21x12

x11

x11x23−x21x13
x11

0 −x11x23−x31x12
x11

− x31x13
x11

 ,

where P is the matrix representation of S. We know that g̃ must remain symplectic on SL(1|1)1, so x31x13 =
x21x12 = 0 and x11x23−x21x13

x11
= x11x13+x31x12

x11
. Some messy algebraic manipulation gives (4.4). It stands to verify

that the bracket relations are preserved under S. Indeed,

[Xi,Xi] = 0, i = 1,2,3

[X1,X2] =

[
X ,Y − x21

x11
X
]
= 0 = [X2,X1],

[X1,X3] =

[
X ,Z− x31

x11

]
= 0 = [X3,X1],

[X2,X3] =

[
Y − x21

x11
X ,Z− x31

x11
X
]
= [Y,Z]− x31

x11
[Y,X ]− x21

x11
[X ,Z]+

x21x31

x2
11

[X ,X ] = X = [X3,X2].

Fix a basis {X1,X2,X3} of sl(1|1) such that g resembles (4.4). Since sl(1|1) is finite-dimensional, we may
identify the dual space sl(1|1)∗ with sl(1|1). The dual basis

{X1,X2,X3}=
{

1
x1

X1,
1
x2

X3,−
1
x2

X2

}
is such that ⟨Xi,X j⟩= δi j. Fix ∇ to be the Levi-Civita connection. We now compute the Ricci curvature of g.
For this, we will compute the covariant derivatives ∇XiX j, where i, j = 1,2,3.
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We start by computing ∇XiX j for all i, j = 1,2,3. By the left-invariance of X1,X2 and X3, the first three terms
in the right hand side of (3.2) vanish. Since ∇ is torsion free, we find

∇X1X2 = ∇X2X1, ∇X1X3 = ∇X3X1, and ∇X2X3 = X1−∇X3X2.

It is easy to see ∇XiXi = 0 for i = 1,2,3 and so we need only compute ∇X1X2,∇X1X3 and ∇X2X3. Firstly,

∇X1X2 = ⟨∇X1X2,X1⟩X1 +
〈
∇X1X2,X2〉X2 +

〈
∇X1X2,X3〉X3,〈

∇X1X2,X1〉= 1
2x1

(⟨[X1,X2],X1⟩−⟨[X2,X1],X1⟩+ ⟨[X1,X1],X2⟩) = 0,〈
∇X1X2,X2〉= 1

2x2
(⟨[X1,X2]X3⟩−⟨[X2,X3],X1⟩−⟨[X3,X1],X2⟩) =−

x1

2x2
,〈

∇X1X2,X3〉=− 1
2x2

(⟨[X1,X2],X2⟩−⟨[X2,X2],X1⟩−⟨[X2,X1],X1⟩) = 0,

=⇒ ∇X1X2 = ∇X2X1 =−
x1

2x2
X2.

Now for ∇X1X3 = ∇X3X1:

∇X1X3 =
〈
∇X1X3,X1〉+〈∇X1X3,X2〉+〈∇X1X3,X3〉 ,〈

∇X1X3,X1〉= 1
2x1

(⟨[X1,X3],X1⟩−⟨[X3,X1],X1⟩+ ⟨[X1,X1],X3⟩) = 0,〈
∇X1X3,X2〉= 1

2x2
(⟨[X1,X3],X3⟩−⟨[X3,X3],X1⟩−⟨[X3,X1],X3⟩) = 0,〈

∇X1X3,X3〉=− 1
2x2

(⟨[X1,X3],X2⟩−⟨[X3,X2],X1⟩−⟨[X2,X3],X3⟩) =
x1

2x2
,

=⇒ ∇X1X3 = ∇X3X1 =
x1

2x2
X3.

Finally, for ∇X2X3 = X1−∇X3X2:

∇X2X3 =
〈
∇X2X3,X1〉+〈∇X2X3,X2〉+〈∇X2X3,X3〉 ,〈

∇X2X3,X1〉= 1
2x1

(⟨[X2,X3],X1⟩+ ⟨[X3,X1],X2⟩+ ⟨[X1,X2],X3⟩) =
1
2
,〈

∇X2X3,X2〉= 1
2x2

(⟨[X2,X3],X3⟩−⟨[X3,X3],X2⟩+ ⟨[X3,X2],X3⟩) = 0,〈
∇X2X3,X3〉=− 1

2x2
(⟨[X2,X3],X2⟩−⟨[X3,X2],X2⟩+ ⟨[X2,X2],X3⟩) = 0,

=⇒ ∇X2X3 = ∇X3X2 =
1
2

X1.

In our basis {X1,X2,X3}, (3.4) amounts to

Ric(Xi,X j) =
3

∑
k=1

(−1)|k|(| j|+1)
〈

R(Xi,Xk)X j,Xk
〉
,

where R(Xi,Xk)X j := [∇Xi ,∇Xk ]X j−∇[Xi,Xk]X j. One can easily see that the only non-zero components of the
Ricci tensor are Ric(X1,X1),Ric(X2,X3) and Ric(X3,X2). By the symmetry of the Ricci tensor, we need only
compute Ric(X1,X1) and Ric(X2,X3).
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We first compute Ric(X1,X1):

Ric(X1,X1) =
〈
R(X1,X1)X1,X1〉−〈R(X1,X2)X1,X2〉−〈R(X1,X3)X1,X3〉

=
1
x1
⟨[∇X1 ,∇X1 ]X1,X1⟩−

1
x2
⟨∇X1∇X2X1,X3⟩+

1
x2
⟨∇X1∇X3X1,X2⟩

=− 1
x2

〈
− x1

2x2
∇X1X2,X3

〉
+

1
x2

〈
x1

2x2
∇X1X3,X2

〉
=

x1

2x2
2

〈
− x1

2x2
X2,X3

〉
+

x1

2x2
2

〈
x1

2x2
X3,X2

〉
=− x2

1

4x3
2
⟨X2,X3⟩+

x2
1

4x3
2
⟨X3,X2⟩=−

x2
1

4x2
2
− x2

1

4x2
2
=− x2

1

2x2
2
.

For Ric(X2,X3) =−Ric(X3,X2), we find

Ric(X2,X3) =
〈
R(X2,X1)X3,X1〉+〈R(X2,X2)X3,X2〉+〈R(X2,X3)X3,X3〉

=
1
x1
⟨∇X2∇X1X3−∇X1∇X2X3,X1⟩+

1
x2
⟨[∇X2 ,∇X2 ]X3,X3⟩

− 1
x2
⟨∇X3∇X2X3−∇X1X3,X2⟩

=
1
x1

〈
x1

2x2
∇X2X3−

1
2

∇X1X1,X1

〉
+

1
x2
⟨2∇X2∇X2X3,X3⟩

− 1
x2

〈
1
2

∇X3X1−
x1

2x2
X3,X2

〉
=

1
4x2

2
⟨X1,X1⟩+

1
x2
⟨∇X2X1,X3⟩−

1
x2

〈
x1

4x2
X3−

x1

2x2
X3,X2

〉
=

x1

4x2
− x1

2x2
2
⟨X2,X3⟩+

x1

4x2
2
⟨X3,X2⟩=−

x1

2x2
.

4.3.1. The Ricci flow equation. We now analyse the Ricci Flow equations for SL(1|1). It suffices to
study the system of ODEs:

(4.5)

∂

∂ t
x1(t) =

x1(t)2

x2(t)2 ,

∂

∂ t
x2(t) =

x1(t)
x2(t)

,

with initial data x1(0),x2(0) ∈R\{0}. We claim that Ψ(t,x1,x2) := x1(t)
x2(t)

is a first integral of (4.5). Indeed, if
x1(t) and x2(t) solve (4.5) then

∂

∂ t
Ψ(t,x1,x2) =

x2(t) ∂

∂ t x1(t)− x1(t) ∂

∂ t x2(t)
x2(t)2 =

x2(t)
(

x1(t)2

x2(t)2

)
− x1(t)

(
x1(t)
x2(t)

)
x2(t)2 = 0.

Hence, solutions of (4.5) have the form x1(t) = λx2(t), for λ = x1(0)
x2(0)

. That is,

x1(t) = λ
2t + x1(0), x2(t) = λ t + x2(0).
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We must consider four cases:

(i) x1(0)> 0 and x2(0)> 0,
(ii) x1(0)> 0 and x2(0)< 0,

(iii) x1(0)< 0 and x2(0)> 0, and
(iv) x1(0)< 0 and x2(0)< 0.

It is easy to see that when x1(0)> 0, renormalising by 1
t gives x1(t)→ λ 2 and x2(t)→ λ , as t → ∞. This

leaves cases (iii) and (iv).

Case (iii): Since λ > 0, ∂

∂ t x1(t) = λ 2 > 0 and ∂

∂ t x2(t) = λ > 0. Thus, there exists T := − x2(0)2

x1(0)
< ∞ such

that x1(T ) = x2(T ) = 0.

Case (iv): Similarly, ∂

∂ t x1(t) = λ 2 > 0 and ∂

∂ t x2(t) = λ < 0 and so T :=− x2(0)2

x1(0)
< ∞ has x1(T ) = x2(T ) = 0.

In these last two cases, we must stop the flow as the metric becomes degenerate. It is interesting to note that
renormalising here does not improve the situation. The above discussion leads to the following result.

THEOREM 4.15. Let g0 be a left-invariant metric defined by (4.4) on SL(1|1). There exists a unique solution
to the Ricci flow equation, and we observe one of two possible behaviours:

(i) given x1(0)> 0, the Ricci flow converges to an Einstein metric when renormalised by 1
t ;

(ii) given x1(0)< 0, the Ricci flow has finite time extinction and the manifold shrinks to a point.
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CHAPTER 5

The Ricci flow of homogeneous supermanifolds

Let G= (GRed,g) be a connected Lie supergroup and H = (HRed,h) be a closed connected Lie sub-supergroup.
Assume that g is a basic classical Lie superalgebra [Kac77], i.e., g0 is reductive and g admits a non-degenerate
even supersymmetric bilinear form Q, which is adg-invariant. Since G is connected, Q is AdG-invariant.

Recall that G-invariant metrics on the homogeneous superspace G/H are in one-to-one correspondence
with AdH-invariant scalar superproducts on To(G/H)∼= g/h, where o = H is the identity coset in G/H. In
this chapter, we study the super homogeneous Ricci flow of G-invariant metrics on compact homogeneous
superspaces G/H (recall that G/H is compact when the Lie algebra of G is a compact real form). We
focus on the cases where the isotropy representation decomposes into one or two inequivalent irreducible
summands. In section 5.6, we adapt techniques from Buzano [Buz14, Theorem 3.4] and [Buz12, Chapter 3],
who extensively examines this problem in the non-super context.

5.1. Preliminaries

The setup is similar to the non-super setting. For completeness, we clarify the details here. Fix a AdH-invariant
Q orthogonal complement m of h such that

(5.1) g= h⊕m.

Let g be a G-invariant metric on G/H (recall that this requires the odd dimension of m to be even). The
metric g affords us a Q-orthogonal AdH-invariant decomposition

(5.2) m=m1⊕ . . .⊕ms

such that each mi is irreducible. In general, this decomposition is not unique. We assume that mi ̸∼=m j as
adh-representations whenever i ̸= j. In this case, the summands are determined uniquely up to order.

As H is connected and g is G-invariant, there is an associated adh-invariant even non-degenerate super-
symmetric bilinear form ⟨·, ·⟩ on m. Schur’s lemma implies that there exist xi ∈ R \ {0},1 ≤ i ≤ s such
that

(5.3) ⟨·, ·⟩= x1Q|m1⊕·· ·⊕ xsQ|ms ,

where xi ∈ R\{0} for 1≤ i≤ s. Let ric(·) : m→m denote the Ricci endomorphism, defined by

Ric(g)(·, ·) := g(ric(·), ·).
With the same proof as Propositions 4.4 and 4.5, the Ricci curvature and square norm of the Riemann
curvature respect the splitting of m into irreducible summands:

Ric(g) = r1x1Q|m1⊕ . . .⊕ rsxsQ|ms ,

|Rm(g(t))|2g(t) =
s

∑
i=1
|Rm(g(t)|mi)|

2
g(t)|mi

=
s

∑
i=1

1
xi(t)2 |Rm(Q|mi)|

2
Q|mi

,

where ric(·) = riid|mi(·).
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For each mi, fix a Q-normalised basis {ei
α : 1≤ α ≤ dimmi} and let {ε i

α : 1≤ α ≤ dimmi} be a right dual
basis such that Q

(
ei

α ,ε
i
α ′
)
= δαα ′ for 1≤ α,α ′ ≤ dimmi. Denote by Ii the index set of the basis for mi. For

every triple 1≤ i, j,k ≤ s, define the structure constants of G/H by

(5.4) [i jk] = ∑
α∈Ii,β∈I j,γ∈Ik

−Q
(

ek
γ ,
[
ei

α ,e
j
β

])
Q
([

ε
j

β
,ε i

α

]
,εk

γ

)
,

The AdG-invariance of Q implies that [i jk] is symmetric in all three indices.

REMARK 5.1. In the classical setting, the structure constants are non-negative because of the squared term
appearing in the sum. In this case, the structure constants can take any value in R. The negative sign appears
so that our expression for the Ricci curvature tensor agrees with the non-super case.

Let B(·, ·) denote the Killing form of the Lie superalgebra g. Since mi is irreducible for each 1 ≤ i ≤ s,
Schur’s lemma implies that there exist bi ∈ R such that

B|mi =−biQ|mi .

PROPOSITION 5.2. [GPRZ23, Proposition 4.15] With the above notation and assumptions, the Ricci tensor
on each summand mi with di := sdim(mi) ̸= 0 is given by

(5.5) rixi =
bi

2
− 1

2di

s

∑
j,k=1

xk

x j
[i jk]+

1
4di

s

∑
j,k=1

x2
i

xkx j
[i jk].

PROPOSITION 5.3. [GPRZ23, Proposition 4.16] With the above notation and assumptions, the scalar
curvature of g is given by

(5.6) S(g) =
s

∑
i=1

ridi =
1
2

s

∑
i=1

bidi

xi
− 1

4

s

∑
i, j,k=1

xk

xix j
[i jk].

The following result follows from the above discussion.

THEOREM 5.4. Let G/H be a Riemannian homogeneous supermanifold. A one-parameter family of metrics
g(t) defined by (5.3) is a solution to the homogeneous super Ricci flow if and only if x1(t), · · · ,xs(t) satisfy
the system

∂

∂ t
xi(t) =−bi +

1
di

s

∑
j,k=1

xk(t)
x j(t)

[i jk]− 1
2di

s

∑
j,k=1

xi(t)2

xk(t)x j(t)
[i jk].

REMARK 5.5. When there is no ambiguity, we sometimes omit writing xi explicitly as a function of t.

5.2. A variational approach

Hamilton [Ham82] showed that for a compact three-dimensional Riemannian manifold (M,g) with Ric(g)> 0,
there exists a smooth one-parameter family of metrics {g(t)} solving

(5.7)
∂

∂ t
g(t) =−2

(
Ric(g(t))− 1

n
E (g(t))g(t)

)
, g(0) = g,

where E is the total scalar curvature functional. Moreover, he showed that g(t) converges to a smooth Einstein
metric as t→ ∞. On a homogeneous manifold, the scalar curvature is constant; thus, E (g) = S(g). Equation
(5.7) reduces to the normalised Ricci flow:

(5.8)
∂

∂ t
g(t) =−2

(
Ric(g(t))− 1

n
S(g(t))g(t)

)
.
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In this section, we show that in the classical setting, the scalar curvature is monotone increasing under both
the normalised and unnormalised Ricci flows. We also consider the evolution of the scalar curvature in the
super setting, providing an explicit example where it is not monotonic.

PROPOSITION 5.6. Let M = G/H be a homogeneous manifold and M G
1 be the space of G-invariant, volume

one metrics on M. The total scalar curvature functional E : M G
1 → R is given by g 7→ S(g) and is monotone

increasing under both (5.8) and (1.1).

PROOF. Let M = G/H and let g ∈M G
1 . Firstly, because dvolg = 1, the total scalar curvature functional

is given by E (g) = S(g). Recall the first variation of E (g):

dEg(h) =
∫

M

〈
S
2

g−Ricg,h
〉

dvolg =
〈

S
2

g−Ricg,h
〉
,

for some (0,2)-tensor h. Setting h =−2Ricg+ 2
n Sg, one finds the evolution of E under (5.8) is given by

∂

∂ t
E (g) =

〈
S
2

g,−2Ricg
〉
+

〈
S(g)

2
g,

2
n

S(g)g
〉
+ ⟨−Ricg(t),−2Ricg⟩+

〈
−Ricg,

2
n

S(g)g
〉

=−S(g)2 +S(g)2 +2|Ricg|2− 2
n

S(g)2 = 2
(
|Ricg|2− 1

n
S(g)2

)
.

Fixing a basis {ei}n
i=1 for m, we can rewrite this as

∂

∂ t
E (g(t)) = 2

(
tr
(
Ric2 g(t)

)
− 1

n
(trRicg(t))2

)

= 2

( n

∑
i=1

g(ric(ei),ei)
2

)(
n

∑
i=1

(
1√
n

)2
)
−

(
n

∑
i=1

1√
n

g(ric(ei),ei)

)2
≥ 0,

the inequality holding via Cauchy-Schwarz. With the same proof, we can show the evolution of E under (1.1)
is given by

∂

∂ t
E (g(t)) = 2|Ricg(t)|2 ≥ 0.

One would hope that a similar result holds for homogeneous superspaces. As we will see, however, the
monotonicity does not hold in general. Regardless, the classical theory motivates the following proposition.

PROPOSITION 5.7. Let M = G/H be a homogeneous superspace equipped with a G-invariant metric g
such that we have the decomposition (5.3). Suppose that g(t) is a solution to the normalised Ricci flow (5.8),
di := sdimmi ̸= 0, and ∑

s
=1 di ̸= 0. Then, the evolution of the scalar curvature under the (5.8) is given by

∂

∂ t
S(g(t)) = 2

(
|Ricg(t)|2− 1

∑
s
i=1 di

S(g(t))2
)
.

PROOF. Fix a Q-normalised basis of each mi such that we have (5.4). Recall that S(g) = ∑
s
i=1 ridi, where

ri is given by (5.5). The normalised Ricci flow equation is given by

(5.9)
∂

∂ t
xi =−2rixi +

2
∑

s
j=1 d j

s

∑
j=1

r jd jxi.
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We naïvely take the time derivative of S under (5.9):

∂

∂ t
S(g(t)) =

s

∑
m=1

∂xm

∂ t

−bmdm

2x2
m

+
1
2

 s

∑
i=1
i̸=m

− s

∑
k=1
k ̸=m

xk

x2
mxi

[imk]+
s

∑
j=1
j ̸=m

1
xix j

[i jm]



−
s

∑
j,k=1
j,k ̸=m

xk

x jx2
m
[m jk]−

s

∑
k=1
k ̸=m

2xk

x3
m
[mmk]− 1

x2
m
[mmm]



− 1
4

 s

∑
i=1
i ̸=m

− s

∑
k=1
k ̸=m

xi

xkx2
m
[imk]−

2

∑
j=1
j ̸=m

xi

x jx2
m
[i jm]− 2xi

x3
m
[imm]

+
s

∑
j,k=1
j,k ̸=m

1
x jxk

[m jk]− 1
x2

m
[mmm]


 .

On the other hand,

2
(
|Ricg|2− 1

∑
s
i=1 di

S2
)
= 2

(
str(Ric2 g)− 1

∑
s
i=1 di

(strRicg)2
)

= 2

∑
j
(−1)|e j|g(ric(e j),ε j)

2− 1
∑

s
i=1 di

(
∑

j
(−1)|e j|g(ric(e j),ε j)

)2


= 2
s

∑
i=1

dir2
i −

1
∑

s
i=1 di

(
s

∑
i=1

diri

)2

.

A lengthy computation shows that these two expressions are equal, thus proving the proposition. See
Appendix A for a Mathematica script demonstrating this computation.

REMARK 5.8. Considering the evolution of S(g(t)) under the unnormalised Ricci flow, we find that

∂

∂ t
S(g(t)) = 2|Ricg|2.

Since |·| depends on the metric g, which can have any signature, this will not be non-negative in general.

Proposition 5.7 characterises the evolution of the scalar curvature under normalised Ricci flow. In contrast to
classical theory, we cannot hope to have ∂

∂ t S≥ 0 in general. The following example makes this clear.

EXAMPLE 5.9. Let G = SU(3|4) and H = S(U(2)×U(1|2)×U(2)) with Lie superalgebras g and h, respec-
tively. Consider the homogeneous supermanifold G/H. Set Q to be the supertrace, a non-degenerate even
supersymmetric bilinear form, and let g be a G-invariant Riemannian metric on G/H. Fix a Q-orthogonal
complement m of h such that we have the decomposition

g= h⊕m1⊕m2⊕m3,

where mi ̸∼=m j for i ̸= j. The associated scalar superproduct on m is such that

⟨·, ·⟩= x1Q|m1⊕ x2Q|m2⊕ x3Q|m3 .

It is well known that B(X ,Y ) =−2str(X ,Y ) for X ,Y ∈ su(3|4), so bi = 2 for i = 1,2,3. Gould, Pulemotov,
Rasmussen and Zhang [GPRZ23] compute d1 =−4,d2 = 4,d3 =−8, and the only non-zero structure constant,
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[123] =−8. Hence, the normalised Ricci flow equation becomes

(5.10)

∂

∂ t
x1 =

−3x2
1 +2x1x2 + x2

2− (x1 + x2)x3 + x2
3

x2x3
,

∂

∂ t
x2 =

−3x2
1 +2x1x2 +2x2

2−3x1x3 + x2x3−3x2
3

x1x3
,

∂

∂ t
x3 =

x3(x2− x1−2x3)

x1x2
.

The evolution of the scalar curvature under (5.10) is given by

∂

∂ t
S(g(t)) =

4
(
(x1− x2)

4 +2(x1− x2)
2(3x1 + x2)x3 +(x1− x2)(13x1 +7x2)x2

3 +2(3x1 + x2)x3
3 + x4

3
)

(x1x2x3)2 .

As x1(t),x2(t) and x3(t) are not sign definite, ∂

∂ t S(g(t)) can change sign.

REMARK 5.10. The same conclusion holds when considering the unnormalised Ricci flow.

5.3. When G/H is isotropy irreducible

In this section, we prove the following theorem.

THEOREM 5.11. Let G/H be a homogeneous superspace with irreducible isotropy representation m. Then,
there exists a unique solution

x(t) =
(
[111]

2d
−b
)

t + x(0)

to the Ricci flow equation on G/H. Furthermore, this solution is defined on a maximal time interval [0,T )
and we see one of two possible behaviours occur:

(i) if x0
C > 0, where C := [111]

2d − b, then T < ∞ is a Type I singularity and G/H shrinks to a point as
t→ T ;

(ii) if x0
C < 0, then T = ∞ and x(t) diverges to ±∞.

PROOF. Since s = 1, we write x(t),b, and d to mean x1(t),b1 and d1, respectively. Theorem 5.4 implies
that the Ricci flow equation on G/H becomes

(5.11)
∂

∂ t
x(t) =

[111]
2d
−b,

x(0) = x0.

Integrating (5.11), we find x(t) =Ct + x0, where C := [111]
2d −b. We now consider two cases:

Case 1 (C > 0): Here x(t) is increasing, so given x0 < 0, we find x
( x0

C

)
= 0. If x0 > 0, then x(t)→ ∞ as

t→ ∞.

Case 2 (C < 0): Here x(t) is decreasing, so given x0 > 0, we find x
( x0

C

)
= 0. If x0 < 0, then x(t)→−∞ as

t→ ∞.

When x0
C > 0, G/H shrinks to a point since x(t) → 0 as t → T := x0

C . In this case, |Rm(g(t))|2g(t) =
1

x(t)2 |Rm(Q)|2Q, and so |Rm(g(t)|2g(t) blows up like (T − t)−2. Thus, |Rm(g(t))|g(t) blows up like (T − t)−1,
meaning T is a Type I singularity.

REMARK 5.12. Schur’s lemma implies that there is a unique left-invariant metric on G/H, which is neces-
sarily Einstein. Rescaling x(t) by (T − t)−1, we obtain a metric homothetic to this Einstein metric.
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5.4. When H is not maximal in G

Let G/H be a homogeneous superspace with two irreducible, inequivalent isotropy summands. Assume there
exists a subgroup K such that H < K < G. Notably, K/H is isotropy irreducible and every G-invariant metric
g on G/H is a submersion metric

K/H −→ G/H −→ G/K

by rescaling the metric on the fibre and base. Without loss of generality we define Lie(K) = k := h⊕m1. As
[m1,m1] ⊂ k is Q-orthogonal to m2, the structure constants [112] = [211] = [121] vanish. We consider the
one parameter family of homogeneous Riemannian metrics

g(t) = x1(t)Q|m1⊕ x2(t)Q|m2 ,

where x1(t),x2(t) are real valued smooth functions in t. Proposition 5.2 allows us to compute the Ricci flow
equations on G/H:

(5.12)

∂

∂ t
x1(t) =−b1 +

[111]
2d1

+
[122]

d1
− [122]

2d1

(
x1(t)
x2(t)

)2

,

∂

∂ t
x2(t) =−b2 +

[222]
2d2

+
[122]

d2

x1(t)
x2(t)

,

where di := sdimmi.

REMARK 5.13. It is possible for the superdimension di to be 0, in which case the above formula makes no
sense. In this project, we only consider decompositions (5.2) where di ̸= 0 for all 1≤ i≤ s.

As the right hand side of this system and it first derivatives are continuous on the set

D = {(x1,x2) ∈ R2|x2 ̸= 0},

the Picard-Lindelöff theorem implies that, given initial data (x1(0),x2(0)) ∈D , there exists a unique solution
(x1(t),x2(t)) defined on any interval I containing t = 0. Moreover, (x1(t),x2(t)) ∈D for all t ∈ I. By defining

A =
[122]
2d1

, B =
[122]

d2
, C = b1−

[111]
2d1
− [122]

d1
, D = b2−

[222]
2d2

,

(5.12) becomes

(5.13)

∂

∂ t
x1(t) =−C−A

(
x1(t)
x2(t)

)2

,

∂

∂ t
x2(t) =−D+B

x1(t)
x2(t)

.

REMARK 5.14. The analysis of system (5.13) in the non-super case was conducted in [Buz14]. It is important
to note that the supermanifold structure presents a new challenge as A, B, C, and D are not necessarily
positive. As a result, the analysis in [Buz14] cannot be directly applied.

We notice that A+B = [122]
2d1

+ [122]
d2

= 0 when [122] = 0. In this case, system (5.13) becomes

∂

∂ t
x1(t) =

[111]
2d1
−b1,

∂

∂ t
x2(t) =

[222]
2d2
−b2.
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We can adopt a similar approach as in Section 5.3 to analyse the behaviour of this system. Indeed, given
initial conditions (x1(0),x2(0)) ∈D , we find

(5.14)
x1(t) =

(
[111]
2d1
−b1

)
t + x1(0),

x2(t) =
(
[222]
2d2
−b2

)
t + x2(0).

The following table describes the different behaivour of (5.12) depending on the sign of [iii]
2di
−bi for i = 1,2.

TABLE 1. Behaviour of xi(t) when A+B = 0

Initial Conditions
Behaviour when Converges in Behaviour when Converges in

[iii]
2di
−bi > 0 finite time [iii]

2di
−bi < 0 finite time

xi(0)> 0 xi→ ∞ No xi→ 0 Yes
xi(0)< 0 xi→ 0 Yes xi→−∞ No

In the case xi(t)→ 0 as t→ T , it is easy to see that xi(t)∼ ki(T − t) for some ki ∈ R\{0}. Proposition 4.5
implies that T is a Type I singularity. Then, by Theorem 4.8, we have the following result.

PROPOSITION 5.15. Let G/H be a homogeneous superspace where H is not maximal in G. Suppose that the
structure constants [122] = [221] = [212] = 0. Then the homogeneous Ricci flow, given by (5.14), exhibits
one of three behaviours:

(i) If the inequality −xi(0)
[iii]
2di
−bi

> 0 holds for exactly one of i = 1,2, then there exists a Type I singularity T

such that xi(t)→ 0 as t→ T . Furthermore, G/H converges in the Gromov-Hausdorff sense to G/K.
(ii) If −xi(0)

[iii]
2di
−bi

> 0 holds for both i = 1 and i = 2, then there exists a Type I singularity T such that xi(t)→ 0

as t→ T . Furthermore, the whole space G/H shrinks to a point.
(iii) If −xi(0)

[iii]
2di
−bi

< 0 for all i = 1,2, then xi(t) diverges as t→ ∞.

Suppose now that [122] = [221] = [212] ̸= 0. Consider the quantity y(t) = x1(t)
x2(t)

. The evolution of y(t) under
(5.12) is given by

(5.15)
∂

∂ t
y(t) =

x2(t) ∂

∂ t x1(t)− x1(t) ∂

∂ t x2(t)
x2

2
=

1
x2(t)

(
−(A+B)y(t)2 +Dy(t)−C

)
.

The critical points of C−Dy(t)+(A+B)y(t)2 = 0 are given by

y(t) =
D±

(
D2−4C(A+B)

) 1
2

2(A+B)
.

It is well known (for example, see [BWZ04]) that roots of (5.15) correspond to homogeneous Einstein metrics
on G/H. The following is a slight generalisation of [Buz14, Lemma 3.3].

LEMMA 5.16. The quantity y(t) = x1(t)
x2(t)

is monotone under the homogeneous super Ricci flow.
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PROOF. We consider the three scenarios based on the number of roots of (5.15):

(i) There are no roots of (5.15) and

∂

∂ t
y(t) =

1
x2

(
−(A+B)y(t)2−Dy(t)+C

)
is sign definite. Given x2 > 0, the conditions A+B > 0 and A+B < 0 correspond to ∂

∂ t y < 0 and
∂

∂ t y(t)> 0, respectively. The opposite is true when x2 < 0.
(ii) There is exactly one root, y1, of (5.15) and

∂

∂ t
y(t) =

1
x2

(
−(A+B)y(t)2−Dy(t)+C

)
=− 1

x2
(A+B)(y− y1)

2.

We find that, for x2 > 0, ∂

∂ t y(t) is positive if A+B < 0, and negative if A+B > 0. The opposite
assertion holds given x2 < 0.

(iii) There are two roots, y1 and y2, of (5.15) and

∂

∂ t
y(t) =

1
x2

(
−(A+B)y(t)2−Dy(t)+C

)
=− 1

x2
(A+B)(y− y1)(y− y2).

Fix x2 > 0 (the case when x2 < 0 is analogous, and so we omit it). Assume, without loss of generality,
that y1 < y2. By the existence and uniqueness of solutions, one cannot flow through y1 or y2. Hence,
(y− y1)(y− y2) does not change sign. The constants A, B, and y(0) determine this sign.

Define a reparametrisation of time τ such that dτ

dt := 1
x2(t)

. By the chain rule,

(5.16)
dν

dτ
=−(A+B)ν(τ)2 +Dν(τ)−C,

where ν(τ) := y(t(τ)).

We distinguish three cases based on the number of roots of (5.15):

(I) equation (5.16) has no solutions,

(II) equation (5.16) has one solution ν , and

(III) equation (5.16) has two solutions ν1 and ν2.

5.4.1. Case (I). By Lemma 5.16, we consider the cases when A+B > 0 and A+B < 0 separately.
Suppose that A+B > 0. As (5.16) has no solutions, ∂

∂τ
ν(τ)< 0 for all τ and D2 < 4C(A+B). Let ν(0)> 0.

Since ∂

∂τ
ν(τ) does not cross the axis, it is bounded by the turning point:

∂

∂τ
ν(τ)≤−C−

(
D2

4(A+B)

)
< 0.

Hence, there exists some positive T ≤ 4ν(0)(A+B)
D2−4(A+B)C such that ν(T ) = 0. If ν(0)< 0, we find that, as τ → ∞,

ν(τ)→−∞. With the same bounds, the opposite assertion holds when A+B < 0. The following table
describes the possible behaviour when there are no solutions to (5.16).
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TABLE 2. Behaviour of ν(τ) when (5.16) has no solutions

Initial Conditions
Behaviour when Converges in Behaviour when Converges in

A+B > 0 finite time A+B < 0 finite time

ν(0)> 0 ν → 0 Yes ν → ∞ No
ν(0)< 0 ν →−∞ No ν → 0 Yes

5.4.2. Case (II). We again consider two cases based on the sign of A+B. If A+B > 0, ∂

∂τ
ν(τ) < 0

(unless ν(0) = ν , in which case ∂

∂τ
ν(τ) = 0). We consider separately when the critical point ν is positive,

negative, and zero.

Firstly, if ν(0) < 0 then ν(τ) diverges to −∞ as τ → ∞. Similarly, if ν(0) > ν then ν(τ)→ ν as τ → ∞.
Suppose that 0 < ν(0)< ν . We have the estimate

∂

∂τ
ν(τ)≥−(A+B)ν(0)2 +Dν(0)−C.

Integrating yields ν(τ)≥
(
−(A+B)ν(0)2 +Dν(0)−C

)
τ+ν(0), and so there exists some T ≤ ν(0)

−(A+B)ν(0)2+Dν(0)−C
such that ν(T ) = 0.

If ν < 0, we see similar behaviour: suppose ν < ν(0)< 0, then ν(τ)→ ν as τ → ∞. Given ν(0)< ν , then
ν(τ)→−∞ as τ → ∞. If ν(0)> 0, we can bound ∂

∂τ
ν(τ)≤−C for all τ such that ∂

∂τ
ν(τ)> 0. Integrating

this we find ν(τ)≤−Cτ +ν(0), and so there exists some T ≤ ν(0)
C such that ν(T ) = 0.

Finally, if ν = 0, we see ν(τ) either converge to 0 or diverge to −∞ as τ → ∞. We remark that this occurs
if and only if C = 0. The analysis when A+B < 0 is very similar, and so we omit it. The following table
represents the possible behaviours of ν(τ).

TABLE 3. Behaviour of ν(τ) when (5.16) has one solution

Initial Conditions
Behaviour when Converges in Behaviour when Converges in

A+B > 0 finite time A+B < 0 finite time

0 < ν < ν(0) ν → ν No ν → ∞ No
0 < ν(0)< ν ν → 0 Yes ν → ν Yes
ν(0)< 0 < ν ν →−∞ No ν → 0 No

ν < 0 < ν(0) ν → 0 No ν → ∞ No
ν < ν(0)< 0 ν → ν No ν → 0 Yes
ν(0)< ν < 0 ν →−∞ No ν → ν No

ν = 0 < ν(0) y→−∞ No ν → 0 No
ν = 0 > ν(0) ν → 0 No ν → ∞ No

5.4.3. Case (III). In this case we have two solutions ν1 and ν2. Assuming, without loss of generality,
that ν1 < ν2, there are five possible ways to arrange the two solutions about 0. Using the same two bounds
on ∂

∂τ
ν(τ) (either ∂

∂τ
ν(τ) ≥ −(A+B)ν(0)2 +Dν(0)−C or ∂

∂τ
ν(τ) ≤ −C), one can show that in certain

cases there exists T < ∞ such that ν(T ) = 0. The following table describes the behaviour of ν(τ) under the
assumptions of (III).
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TABLE 4. Behaviour of ν(τ) when (5.16) has two solutions

Initial Conditions
Behaviour when Converges in Behaviour when Converges in

A+B > 0 finite time A+B < 0 finite time

0 < ν1 < ν2 < ν(0) ν → ν2 No ν → ∞ No

0 < ν1 < ν(0)< ν2 ν → ν2 No ν → ν1 No

0 < ν(0)< ν1 < ν2 ν → 0 Yes ν → ν1 No

ν(0)< 0 < ν1 < ν2 ν →−∞ No ν → 0 Yes

ν1 < 0 < ν2 < ν(0) ν → ν2 No ν → ∞ No

ν1 < 0 < ν(0)< ν2 ν → ν2 No ν → 0 Yes

ν1 < ν(0)< 0 < ν2 ν → 0 Yes ν → ν1 No

ν(0)< ν1 < 0 < ν2 ν →−∞ No ν → ν1 No

ν1 < ν2 < 0 < ν(0) ν → 0 Yes ν → ∞ No

ν1 < ν2 < ν(0)< 0 ν → ν2 No ν → 0 Yes

ν1 < ν(0)< ν2 < 0 ν → ν2 No ν → ν1 No

ν(0)< ν1 < ν2 < 0 ν →−∞ No ν → ν1 No

0 < ν2 < ν(0) ν → ν2 No ν → ∞ No

0 < ν(0)< ν2 ν → ν2 No ν → 0 No

ν(0)< 0 < ν2 ν →−∞ No ν → 0 No

ν1 < 0 < ν(0) ν → 0 No ν → ∞ No

ν1 < ν(0)< 0 ν → ν1 No ν → 0 No

ν(0)< ν1 < 0 ν →−∞ No ν → ν1 No

Unfortunately we were unable to investigate the asymptotics in the original time variable. Undoing the
reparametrisation t⇝ τ appears to be quite subtle. However, we have the following.

CONJECTURE A. Let G/H be a homogeneous superspace where H is not maximal in G and consider a
homogeneous G-invariant Riemannian metric of the form (1.3). If (x1(0),x2(0)) ∈ {(x1,x2) ∈ R2 : x1 ̸=
0,x2 > 0}, then the behaviour of the quantity x1(t)

x2(t)
under the homogeneous super Ricci flow is as in Tables 2,

3, and 4.

On the other hand, if x2(0) < 0 and A+B > 0 (resp. A+B < 0), then the behaviour of x1(t)
x2(t)

under the
homogeneous super Ricci flow is as in Tables 2, 3, and 4, found on pages 49 and 50, corresponding to the
columns with A+B < 0 (resp. A+B > 0).

We suspect that the different behaviour when x2(0) < 0 occurs because of the presence of x2(t) in the
reparametrisation τ(t) =

∫ t
0

1
x2(s)

ds.
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Conjecture A, if proven true, implies that the Ricci flow of homogeneous superspaces with two isotropy
summands has different behaviour, in general, to its non-super counterpart. We now give an explicit example
of an infinite family of homogeneous supermanifolds which do not exhibit a finite time singularity. This
example, and many others can be constructed similarly to the homogeneous spaces in [DK08, Section 5.2].

5.5. An example without finite time singularities

To construct the following example, we first consider an analogous space in the non-super setting. To show
that the isotropy representation of this homogeneous space splits into two inequivalent irreducible summands,
we first discuss some general theory of generalised flag manifolds, following the exposition in [AC09].

5.5.1. Generalised flag manifolds and their isotropy representations. Let G be a compact semisimple
Lie group. A compact connected abelian Lie subgroup of G is called a torus. A generalised flag manifold is a
homogeneous space G/K where the isotropy group K is the centraliser of a torus in G. Consider a generalised
flag manifold G/K. Let gC denote the complexified Lie algebra of G and hC denote the Cartan subalgebra of
gC. With the notation of section 2.2, we fix a Cartan-Weyl basis {Hα ,Eα} of gC with compact real form

g=
√
−1hR⊕

⊕
α∈∆+

RAα ⊕
⊕

α∈∆+

R
√
−1Bα .

Let ΠK be a subset of Π = {α1, . . . ,αl}, where l = dimhC, and define ΠM := Π \ΠK . Denote by ∆K the
closed subsystem spanned by ΠK , and set ∆M = ∆\∆K . We have the following subsystems of ∆:

∆
+
K := ∆

+∩⟨ΠK⟩, ∆
+
M := ∆

+∩∆M,

∆
−
K := ∆

−∩⟨ΠK⟩, ∆
−
M := ∆

−∩∆M,

where ⟨ΠK⟩ denotes the roots generated by ΠK . The set

k=
√
−1hR⊕

⊕
α∈∆

+
K

RAα ⊕
⊕

α∈∆
+
K

R
√
−1Bα .

is a real subalgebra of g corresponding to the Lie group K [AC09]. We define a linear subspace of g by

m :=
⊕

α∈∆
+
M

RAα ⊕
⊕

α∈∆
+
M

R
√
−1Bα .

We thus have a reductive decomposition g= k⊕m, where [k,m]⊂m. We identify the space m with the tangent
space TK(G/K). As usual, the isotropy representation of K on TK(G/K) is identified with the restriction of
the adjoint representation of K on m, AdK |m.

Suppose that ΠM = {αi1 , . . . ,αir} for 1≤ i1, . . . , ir ≤ l. For any positive integers k1, . . . ,kr, define

∆(k1, . . . ,kr) =

{
l

∑
j=1

m jα j : mi1 = k1, . . . ,mir = kr

}
.

If ∆(k1, . . . ,kr) ̸= /0, we define an AdK-invariant subspace of g by

m(k1, . . . ,kr) :=
⊕

α∈∆(k1,...,kr)

RAα ⊕
⊕

α∈∆(k1,...,kr)

R
√
−1Bα .

Then,
m=

⊕
k1,...,kr

m(k1, . . . ,kr).
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Let m±(k1, . . . ,kr) = ∑α∈∆(k1,...,kr) g
C
±α , then

m(k1, . . . ,kr)
C =m+(k1, . . . ,kr)⊕m−(k1, . . . ,kr)

Let k′= [kC,kC] be the semisimple part of kC. We have the following sufficiency condition for the irreducibility
of the AdK-module m(k1, . . . ,kr).

THEOREM 5.17. [Kim90, Lemma 2.2] For each m(k1, . . . ,kr), the following are equivalent:

(i) adg |k : k→ gl(m(k1, . . . ,kr)) is a real irreducible representation of k,
(ii) adgC |k′ : k′→ gl(m+(k1, . . . ,kr)) is a complex irreducible representation of k′,

(iii) adgC |k′ : k′→ gl(m−(k1, . . . ,kr)) is a complex irreducible representation of k′.

5.5.2. An example in the non-super setting. In this section, we show that the homogeneous space
SU(pq+m)/SU(p)×SU(q)×U(m) has two inequivalent irreducible isotropy summands. Wolf [Wol68]
gives an irreducible unitary representation of SU(p)×SU(q)

π : SU(p)×SU(q)→ SU(pq),

where the inclusion is the tensor product of the natural representations of SU(p) and SU(q). In other words,

dπ
C : sl(Cp)⊕ sl(Cq)→ sl(Cp⊗Cq)

is irreducible. We extend this inclusion to

π̃ : SU(p)×SU(q)×U(m)→ SU(pq)×U(m),

where π̃(g,h) = (π(g),h). With this in mind, consider the Lie groups H ≤ K ≤ G, where

H := SU(p)×SU(q)×U(m), K := SU(pq)×U(m), and G := SU(pq+m).

In order to show that G/H has two irreducible inequivalent isotropy summands, we must show three facts:

• G/K is isotropy irreducible;
• the isotropy representation of K on TK(G/K) restricted to H is irreducible;
• K/H is isotropy irreducible.

Denote by h,k, and g, the Lie algebras of H,K, and G, respectively. Let us first show that G/K is isotropy
irreducible. Consider the complexified Lie algebras kC = sl(Cp⊗Cq)⊕gl(Cm) and gC = sl(Cp⊗Cq⊕Cm)
of k and g. The root systems of G and K are

∆ = {εi− ε j : 1≤ i ̸= j ≤ pq+m},
∆K = {εi− ε j : 1≤ i ̸= j ≤ pq}∪{εi− ε j : pq+1≤ i ̸= j ≤ pq+m}.

Hence,

∆M = {εi− ε j,ε j− εi : 1≤ i≤ pq, pq+1≤ j ≤ pq+m}

is the set of roots corresponding to mC, which we identify with the complexified tangent space TK(G/K)C ∼=
gC/kC. Define ∆

±
M := ∆M ∩∆±. Notice that the Cartan subalgebra of gC is the traceless diagonal matrices of

size pq+m, and so |Π|= pq+m−1. Hence, ΠM = Π\ΠK = {αi1} for some 1≤ i1 ≤ pq+m−1. Define

∆(k) =

{
pq+m−1

∑
i=1

miαi : mi1 = k

}
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for each positive integer k. Since the coefficients of positive roots of Type A are either 1 or 0, ∆(k) ̸= /0
requires k = 1. Hence, ∆(1) = ∆

+
M, allowing us to define

mC
±2 :=m±(1) =

⊕
α∈∆

+
M

gC±α .

Explicitly,

mC
+2 =

{(
0 B
0 0

)
: B ∈Mpq,m(C)

}
, and mC

−2 =

{(
0 0
C 0

)
: C ∈Mm,pq(C)

}
.

We now compute the adjoint representation of kC on mC =mC
2 ⊕mC

−2. Indeed, let X ∈ sl(Cp⊗Cq)⊕gl(Cm)
have block form

X =

(
X1 0
0 X2

)
, X1 ∈ sl(Cp⊗Cq),X2 ∈ gl(Cm).

We know Y ∈m has block form

Y =

(
0 B
C 0

)
, where B ∈Mpq,m(C),C ∈Mm,pq(C),

so consider

Y1 =

(
0 B
0 0

)
∈mC

2 and Y2 =

(
0 0
C 0

)
∈mC

−2.

Then,

adX(Y1) =

(
0 X1B−BX2
0 0

)
, adX(Y2) =

(
0 0

X2C−CX1 0

)
.

Hence, mC
+2
∼= Cp⊗Cq⊗ (Cm)∗ and mC

−2
∼= (Cp⊗Cq)∗⊗Cm. The action of kC ∼= sl(Cp⊗Cq)⊕ gl(Cm)

on mC
+2
∼= Cp⊗Cq⊗ (Cm)∗ is given by the tensor product of the natural representation of sl(Cp⊗Cq) and

the dual of the natural representation of gl(Cm). Similarly, the action of kC ∼= sl(Cp⊗Cq)⊕ gl(Cm) on
mC
−2
∼= (Cp⊗Cq)∗⊗Cm is given by tensor product of the dual of the natural representation of sl(Cp⊗Cq)

and the natural representation of gl(Cm). Since the tensor product of irreducible representations is irreducible,
mC
±2 are irreducible adk-representations. By Theorem 5.17, m is adk-irreducible. Since K is connected and m

is adk-irreducible, the adjoint representation of K on TK(G/K)∼= g/k is irreducible. This is equivalent to the
isotropy representation of K on TK(G/K) being irreducible.

It follows that the restriction of the isotropy rep of K on TK(G/K) to H remains irreducible. Indeed, the
action of kC on mC

+2 restricted to hC is the tensor product of natural representations of sl(Cp) and sl(Cq),
and the dual of the natural representation of gl(Cm). The restriction of the action of kC on mC

−2 is similarly
irreducible.

We finally show that K/H is isotropy irreducible. Wolf [Wol68] shows that the isotropy representation of
SU(pq)/SU(p)×SU(q) is the tensor product of the adjoint representations of SU(p) and SU(q), which is
irreducible with dimension (p2−1)(q2−1). The action of hC ∼= sl(Cp)⊕ sl(Cq)⊕gl(Cm) on the complexi-
fied tangent space kC/hC ∼= sl(Cp)⊗ sl(Cq) is thus given by the tensor product of the adjoint representations
of sl(Cp) and sl(Cq), and the trivial representation of gl(Cm). Hence, the isotropy representation m1 of K/H
is irreducible with dimension (p2−1)(q2−1).

We now verify that the sum of the dimensions of m1 and m2 match the dimension of the tangent space
TH(G/H). This shows that m=m1⊕m2. Indeed,

dimm1 = (p2−1)(q2−1),

dimm2 = 2pqm,
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dimg/h= (pq+m)2−1− (p2−1+q2−1+m2) = p2q2 +2pqm− p2−q2 +1 = dimm1 +dimm2.

5.5.3. An analogue in the super setting. Consider the same inclusion [Wol68]: π : SU(p)×SU(q)→
SU(pq). This induces an inclusion of Lie supergroups π̃ : SU(p)×SU(q)×U(m|n)→ SU(pq)×U(m|n).
With this in mind, we define the Lie supergroups H ≤ K ≤ G:

H = SU(p)×SU(q)×U(m|n), K = SU(pq)×U(m|n), and G = SU(pq+m|n).
According to [Kac77], the root system of G and the subsystem corresponding to K are

∆ =

{
εi− ε j,δk−δl :

1≤ i ̸= j ≤ pq+m,
1≤ k ̸= l ≤ n

}
∪
{
±(εi−δ j) :

1≤ i≤ pq+m
1≤ j ≤ n

}
,

∆K =
{

εi− ε j : 1≤ i ̸= j ≤ pq
}
∪
{

εi− ε j,δk−δl :
pq+1≤ i ̸= j ≤ pq+m
1≤ k ̸= l ≤ n

}
∪
{
±(εi−δ j) :

pq+1≤ i≤ pq+m
1≤ j ≤ n

}
.

Hence

∆M = ∆\∆K =

{
±(εi− ε j) :

1≤ i≤ pq,
pq+1≤ j ≤ pq+m

}
∪
{
±(εi−δ j) :

1≤ i≤ pq,
1≤ j ≤ n

}
is the set of roots corresponding to mC, which we identify with the complexified tangent space TK(G/K). As
usual, let ∆

+
M = ∆+∩∆M (resp. ∆

−
M = ∆−∩∆M) denote the set of positive (resp. negative) roots in ∆M. The

simple roots in ∆ and ∆K are:

Π =

{
εi−1− εi,εpq+m−δ1,δ j−1−δ j :

2≤ i≤ pq+m
2≤ j ≤ n

}
ΠK = {εi−1− εi : 2≤ i≤ pq}∪

{
εi−1− εi,εpq+m−δ1,δ j−1−δ j :

pq+2≤ i≤ pq+m
2≤ j ≤ n

}
Hence ΠM = {εpq− εpq+1}, and so we define

∆(k) =

{
pq+m+n−1

∑
i=1

miαi : αi ∈Π,mpq+1 = k

}
.

As in the non-super setting, k must be 1 allowing us to define

mC
±2 :=m±(1) =

⊕
α∈∆

+
M

gC±α .

Hence, mC
+2
∼= Cp⊗Cq⊗ (Cm|n)∗, and mC

−2
∼= (Cp⊗Cq)∗⊗Cm|n. These are both irreducible adk-modules

since the action of kC on mC
+2 (resp. mC

−2) is given by the tensor product of the natural (resp. dual of natural)
representation of sl(Cp⊗Cq) and the dual of the natural (resp. natural) representation of gl(Cm|n). By the
same reasoning as the non-super setting, the restriction to hC remains irreducible. Thus, by 5.17, both the
isotropy representation of G/K, m2, and its restriction to H are irreducible.

Finally, the action of hC ∼= sl(Cp)⊕ sl(Cq)⊕gl(Cm|n) on the complexified tangent space kC/hC ∼= sl(Cp)⊗
sl(Cq) is given by the tensor product of the adjoint representations of sl(Cp) and sl(Cq), and the trivial
representation of gl(Cm|n). Hence, the isotropy representation m1 of K/H is irreducible.

It follows that the isotropy representation of G/H splits into two inequivalent irreducible summands m=
m1⊕m2, where

d1 := sdimm1 = (p2−1)(q2−1) and d2 := sdimm2 = 2pq(m−n).
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The ratio of the Killing forms of G and K is α = pq
pq+m−n , and since g is simple, b1 = b2 =−2(pq+m−n).

We compute
[122] = b1d1(1−α) =−2(p2−1)(q2−1)(m−n),

and all other structure constants are zero.

The homogeneous Ricci flow equation of a G-invariant metric on SU(pq+m|n)/S(SU(p)SU(q)U(1)U(m|n))
becomes (5.13) where

A = n−m, B =−(p2−1)(q2−1)
pq

, C =−2pq, D =−2(pq+m−n).

Notice that B and C are always negative. In the non-super setting, [Böh15, Theorem 2] implies that any
homogeneous manifold not diffeomorphic to the torus has finite extinction time. We aim to show that in
this example, the Ricci flow does not have finite extinction time. Let Σ :=

{
(x1,x2) ∈ R2

∣∣x1 ≥ 0,x2 > 0
}

,
and consider initial conditions (x1(0),x2(0)) ∈ Σ. Fix m > n. In this case, A < 0, so ∂

∂ t x1(t) > 0 for all t.
Consider the line

L :=
{
(x1,x2) ∈ Σ

∣∣∣x2 =
B
D

x1

}
.

This line splits Σ into two connected regions:

Σ1 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 <
B
D

x1

}
, and

Σ2 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 >
B
D

x1

}
.

In Σ1, x2(t) is monotone increasing, while in Σ2, x2(t) is monotone decreasing.

If (x1(t),x2(t)) ∈ Σ2, then there exists t1 > t such that (x1(t1),x2(t1)) ∈ L. Since points in L instantly enter Σ1

( ∂

∂ t x2 = 0 and ∂

∂ t x1 > 0), we conclude that any initial condition in Σ2 will eventually enter Σ1. Furthermore,
points in Σ1 have both x1(t) and x2(t) increasing. Hence, every solution blows up as t→ ∞. It is clear that
solutions cannot blow up in finite time.

5.6. An example with finite time singularities

For the remainder of this section, fix G = SOSp(2|2n) and H = U(1|p− 1)× Sp(2(n+ 1− p)). Here
2≤ p≤ n denotes the node removed from the Dynkin diagram of type C(n+1). This is a specific example of
the previous situation, where we have an intermediate subgroup K = SOSp(2|2(p−1))×Sp(2(n+1− p)).
It can be shown (see [GPRZ23]) that the isotropy representation m of G/H splits into two irreducible,
inequivalent summands m=m1⊕m2 satisfying the following relations:

[m2,m2]⊂ h⊕m1, [m2,m1]⊂m2, [m1,m1]⊂ h.

The superdimension of the modules m1 and m2 are d1 = (p− 1)(p− 2) and d2 = 4(p− 2)(n+ 1− p)
respectively. Let g be a G-invariant metric on G/H. The associated scalar superproduct can be written as

(5.17) ⟨·, ·⟩= x1Q|m1
⊕ x2 Q|m2

for x1,x2 ̸= 0. As we saw in Example 3.8, −2nstr(X ,Y ) = B(X ,Y ) for all X ,Y ∈ g, hence taking Q = str
gives bi = 2n for i = 1,2. The above inclusions imply all structure constants except [221] = [212] = [122] =
2(n+1− p)(p−1)(p−2) are zero. We remark that it is possible to have all structure constants vanish (for
example, take p = 2).

57



Substituting our expressions for bi,d1,d2 and [122] into (5.12), the Ricci flow equation on G/H becomes the
system of ODEs

(5.18)

∂

∂ t
x1(t) = 2−2p− (n+1− p)

x1(t)2

x2(t)2 ,

∂

∂ t
x2(t) =−2n+

(p−1)
2

x1(t)
x2(t)

.

Since 2≤ p≤ n, we have the estimate

(5.19)
∂

∂ t
x1(t)≤ 2−2p < 0

for all x1(t) ∈ R and x2(t) ∈ R\{0}. To analyse (5.18), we consider four cases:

(I) x1(0)≥ 0 and x2(0)> 0,

(II) x1(0)≥ 0 and x2(0)< 0,

(III) x1(0)< 0 and x2(0)> 0, and

(IV) x1(0)< 0 and x2(0)< 0.

Case I. This is a specific case of the dynamical system analysed in [Buz14, Theorem 3.4]. We see this
by defining the variables

A = n+1− p, B =
p−1

2
, C = 2p−2, D = 2n.

Let Σ :=
{
(x1,x2) ∈ R2

∣∣x1 ≥ 0,x2 > 0
}

and consider the line

L :=
{
(x1,x2) ∈ Σ

∣∣∣−2n+
p−1

2
x1

x2
= 0
}
.

Points in L are characterised by x2(t) =
p−1
4n x1(t) =: f . This line splits Σ into two connected regions:

Σ1 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 < f
}
, and

Σ2 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 > f
}
.

In Σ1, x2(t) is monotone increasing, while in Σ2, x2(t) is monotone decreasing.

LEMMA 5.18. The set Σ2 is invariant under (5.18).

PROOF. Let (x1(0),x2(0)) ∈ Σ2, and assume that Σ2 is not invariant. Since both x1(t) and x2(t) are
monotone decreasing in Σ2, there exists some t1 > 0 such that (x1(t1),x2(t1))∈ L. However, on L, ∂

∂ t x2(t)
∣∣∣
t1
=

0 and
∂

∂ t
x1(t)

∣∣∣∣
t1

= 2−2p− 16n2(n+1− p)
(p−1)2 < 0.

Hence, (x1(t1),x2(t1)) instantly enters Σ2.
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Given (x1(0),x2(0)) ∈ Σ2, x1(t) and x2(t) are decreasing for all t ≥ 0 by Lemma 5.18. We claim that x2(t)
cannot be 0 before x1(t). Indeed, suppose there exists T ′ < ∞ such that x2(T ′) = 0 yet x1(T ′) ̸= 0. This
implies (x1(t),x2(t)) ∈ Σ1, which is a contradiction since Σ2 is invariant. Observe that

∂

∂ t
x1(t)≤ 2−2p < 0.

Integrating this gives x1(t) ≤ (2− 2p)t + x1(0), and so there exists T < −x1(0)
2−2p < ∞ such that, as t → T ,

x1(t)→ 0 and x2(t) converges to a finite, non-negative limit.

On the other hand, if (x1(0),x2(0))∈Σ1, then x2(t) is increasing until some time t1 > 0 where (x1(t1),x2(t1))∈
L. We have already seen that points in L instantly enter Σ2. By the above argument, this implies there exists
T < ∞ such that, as t→ T , x1(T ) = 0 and x2(t) converges to finite, non-negative limit.

Thus, given x1(0) ≥ 0 and x2(0) > 0, there exists a unique solution to (5.18) defined on a maximal time
interval [0,T ), and we see one of two possible behaviours:

(i) both x1(t) and x2(t) converge to 0 as t→ T , or

(ii) as t→ T , x1(t) converges to 0 and x2(t) converges to a finite, positive limit.

We first consider the situation in (i). Taylor’s theorem implies that, around T , we may write

xi(t) = xi(T )+
∂

∂ t
xi(T )+

∂

∂ t
xi(T )+(T − t)+

∂ 2

∂ t2 xi(T )
2!

(T − t)2 + · · ·+
∂ k

∂ tki
xi(T )

ki!
(T − t)ki +o((T − t)ki)

for some ki ∈ Z+, where i = 1,2. This implies that there exists some ni ∈ Z+ and ci ∈ R such that near T

(5.20) xi(t) = ci(T − t)ni +o((T − t)ni).

By the boundedness of x1(t)
x2(t)

, we conclude that ∂

∂ t x2(t) is bounded and n1 ≥ n2 > 0. Since ∂

∂ t x2(t) is monotone

and, as t→ T , x2(t) converges to 0, we find that ∂

∂ t x2(t) must converge to 0. With this in mind, by substituting
(5.20) into (5.18) we find

lim
t→T

∂

∂ t
x2(t) =−2n+

p−1
2

c1

c2
lim
t→T

(T − t)n1−n2 .

Thus, n1 = n2. Since (T − t)ni ≥ 0 for all t,∫ t

0
xi(s)ds =

∫ t

0
ci(T − s)nids+o

(∫ t

0
(T − s)nids

)
.

Moreover, we have that ∫ t

0

∂

∂ s
x2(s)ds =

∫ t

0
−2n+

p−1
2

x1(s)2

x2(s)2 ds.

Hence, near T we may write

c2(T − t)n2− x2(0) =
∫ t

0
−2n+

p−1
2

x1(s)2

x2(s)2 ds

=−2nt− (p−1)c2
1

2c2
2

(T − t)n1−n2+1

n1−n2 +1
+

(p−1)c2
1T n1−n2+1

2c2
2(n1−n2 +1)

=−2nt− (p−1)c2
1

2c2
2

(T − t)+
(p−1)c2

1

2c2
2

T.

The right hand side is linear, implying n1 = n2 = 1. Therefore, xi(t) converges to 0 linearly in T for i = 1,2.
Proposition 4.5 implies that T is a Type I singularity.
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If we are in scenario (ii), then near T there exist constants c1,c2 ∈ R, and n ∈ Z+ such that

x1(t) = c1(T − t)n1 +o((T − t)n1),

x2(t) = c2 +o(1).

Again, as (T − t)n1 and 1 are positive, we know∫ t

0
x1(s)ds =

∫ t

0
c1(T − s)n1ds+o

(∫ t

0
(T − s)n1ds

)
, and∫ t

0
x2(s)ds =

∫ t

0
c2ds+o

(∫ t

0
1ds
)
.

Hence, near T

c1(T − t)n1− x1(0)+o((T − t)n1) = (2p−2)t− (n+1− p)c2
1

c2
2(2n1 +1)

(T − t)2n1+1 +
(n+1− p)c2

1

c2
2

T 2n1+1

2n1 +1
.

Equating the lower order terms implies n1 = 1. Thus, x1(t) converges to 0 linearly in T . Proposition 4.5
implies that T is a Type I singularity. In addition, Theorem 4.8 implies that G/H converges to G/K in the
Gromov-Hausdorff topology. This proves the following result.

THEOREM 5.19. Let G/H be the homogeneous superspace SOSp(2|2n)/U(1|p− 1)× Sp(2(n+ 1− p))
and consider a homogeneous G-invariant Riemannian metric of the form (1.3) on G/H. If x1(0) > 0 and
x2(0)> 0, then there exists a unique solution to the homogeneous super Ricci flow defined on a maximal time
interval [0,T ). Furthermore, T < ∞ is a Type I singularity, and we see one of two singular behaviours:

(i) both x1(t) and x2(t) converge to 0 and the space G/H shrinks to a point;
(ii) x1(t) converges to 0 while x2(t) approaches a finite, positive limit. Moreover G/H converges to

SOSp(2|2n)/SOSp(2|2(p−1))×Sp(2(n+1−p)) in the Gromov-Hausdorff sense.

Case II. Suppose x1(0)≥ 0 and x2(0)< 0. Then, by Lemma 5.16, x1(t)
x2(t)
≤ x1(0)

x2(0)
≤ 0 for all t such that a

solution to (5.18) exists. We have the estimate

∂

∂ t
x2(t)≤−2n+

p−1
2

x1(0)
x2(0)

=: C,

which integrated gives x2(t)≤Ct + x2(0). We claim that x2(t) cannot diverge to −∞ in finite time. Indeed,
suppose, for a contradiction, that there exists T ′ < ∞ such that limt→T ′ x2(t) =−∞. By the monotonicity of
x1(t), for big enough t we have − x1(t)

x2(t)
≤ 1, hence

∂

∂ t
x2(t)≥−2n+

p−1
2

.

Integrating the above, we find x2(t) ≥
(
−2n+ p−1

2

)
t + x2(0), which is a contradiction. Since x2(t) does

not diverge to −∞ in finite time, estimate (5.19) implies that there exists T < ∞ such that x1(T ) = 0 and x2
converges to a negative, finite value. In this case, solutions enter quadrant three.

This proves the following result.

THEOREM 5.20. Let G/H be the homogeneous superspace SOSp(2|2n)/U(1|p−1)×Sp(2(n+1− p)) and
consider a homogeneous Riemannian metric of the form (5.17) on G/H. If x1(0)> 0 and x2(0)< 0, then
there exists a unique solution to the homogeneous super Ricci flow defined on a maximal time interval [0,T ).
The singular time T is characterised by x1(t)→ 0 and x2(t) converging to a finite, negative value.
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Case III. Suppose x1(0)< 0 and x2(0)> 0. Then, by Lemma 5.16, x1(t)
x2(t)

< x1(0)
x2(0)

< 0 for all t such that a
solution to (5.18) exists. We have that x2(t) is decreasing for all t since

∂

∂ t
x2(t)<−2n+

p−1
2

x1(0)
x2(0)

< 0.

The solution must stop after some finite time T , as otherwise x2(t) would become zero. We claim that x1(t)
cannot diverge to −∞ before x2(t) converges to 0. Suppose, for a contradiction, that there exists an initial
condition and a time T ′ such that limt→T ′ x1(t) = −∞ and x2(T ′) = α > 0. Reparameterising by τ := −t,
we have that x1(τ) and x2(τ) are increasing. Let x1(0) be sufficiently negative, and x2(0) = α . Then, the
solution in τ must intersect the original solution, which contradicts the uniqueness of solutions. Thus, there
exists some T < ∞ such that x2(T ) = 0. As t→ T , x1(t) approaches a negative limit, possibly −∞.

REMARK 5.21. Considering the reparametrisation τ = −t, we see that solutions with initial conditions
x1(0)< 0 and x2(0)> 0 are increasing in τ . In fact,

∂

∂τ
x1(τ)> 2p−2 > 0,

and so x1(τ)> (2p−2)τ +x1(0). Hence, all solutions hit {x1 = 0} in finite time. In other words, all solutions
to (5.18) with initial conditions x1(0)< 0 and x2(0)> 0 come from solutions in quadrant one.

We have thus proven the following.

THEOREM 5.22. Let G/H be the homogeneous superspace SOSp(2|2n)/U(1|p−1)×Sp(2(n+1− p)) and
consider a homogeneous Riemannian metric of the form (5.17) on G/H. If x1(0)< 0 and x2(0)> 0, then
there exists a unique solution to the homogeneous super Ricci flow defined on a maximal time interval [0,T ).
The singular time T is characterised by x2(t)→ 0 and x1(t) approaching a negative limit, possibly −∞.

Case IV. Define Σ = {(x1,x2) ∈ R2 : x1,x2 < 0} and consider initial conditions (x1(0),x2(0)) ∈ Σ. As
in Case I, we consider the line

L :=
{
(x1,x2) ∈ Σ

∣∣∣−2n+
p−1

2
x1

x2
= 0
}
.

This again splits the domain into two connected regions:

Σ1 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 < f
}
, and

Σ2 :=
{
(x1,x2) ∈ Σ

∣∣∣x2 > f
}
.

However, Σ1 is now characterised by x2(t) monotonically decreasing, while Σ2 is characterised by x2(t)
monotonically increasing. With the same proof as Lemma 5.18, we find Σ2 to be invariant.

We consider three cases depending on the number of roots of (5.15):

(a) there are no roots of (5.15),

(b) there is exactly one positive root of (5.15), and

(c) there are two positive roots of (5.15).

Case (a). We first consider (x1(0),x2(0)) ∈ Σ1. Here, both x1(t) and x2(t) are decreasing in t. We also see
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∂

∂ t
x1(t)> 2−2p− (n+1− p)

(
4n

p−1

)2

, and

∂

∂ t
x2(t)>−2n.

In particular, neither x1(t) nor x2(t) can diverge to −∞ in finite time. We claim that the solution must cross L.
Indeed, if it doesn’t, x1(t)

x2(t)
is bounded and increasing for all time, and so approaches a finite, positive limit.

Denote this limit by y. Consider the flow backwards in time by reparametrising τ =−t. Assume there exists
a solution with initial conditions (x1(0),x2(0)) ∈ Σ1 such that x1(0)

x2(0)
= y. We know that x1(τ) and x2(τ) are

monotone increasing in τ , so (x1(τ),x2(τ)) will cross the original solution. This contradicts uniqueness, and
thus any solution with initial conditions in Σ1 must cross L.

We now consider when (x1(0),x2(0)) ∈ Σ2. Since Σ2 is invariant, (x1(t),x2(t)) ∈ Σ2 for all time. Moreover,
x1(t) is always decreasing, while x2(t) is always increasing. Lemma 5.16 implies that x1(t)

x2(t)
is increasing in t

due to (5.15) having no solutions. Hence,

∂

∂ t
x2(t)>−2n+

p−1
2

x1(0)
x2(0)

> 0,

which integrated gives x2(t)>
(
−2n+ p−1

2
x1(0)
x2(0)

)
t + x2(0). The same proof as in Case III shows that x1(t)

cannot diverge to −∞ before x2(t) converges to 0. Consequently, there exists T < ∞ such that, as t→ T , x2(t)
converges to 0 and x1(t) tends to a negative limit, which could be −∞.

Case (b). Assume that y is the unique root of (5.15). As in the proof of Lemma 5.16, we may write

∂

∂ t
y(t) =−2n+1− p

2x2(t)
(y(t)− y)2 .

We see that y(t) is increasing for all t unless on the line x1(t) = yx2(t), which, since y is a positive root of
(5.15), is contained in Σ1 (see Figure 2). We remark that the line x1(t) = yx2(t) is invariant with both x1(t)
and x2(t) decreasing in t. As a result, solutions along this line tend to the origin as t→−∞. We now consider
two cases.

Suppose y(0)< y. In particular, we assume a solution with initial conditions in Σ1. By the uniqueness of
solutions, y(t)< y for all t such that a solution exists. We know both x1(t) and x2(t) are decreasing,

∂

∂ t
x1(t)> 2−2p− (n+1− p)y2, and

∂

∂ t
x2(t)>−2n.

Since the derivatives are bounded from below, the solution exists for all time. Moreover, y(t) is increasing
and bounded for all t, thus it approaches a positive limit, which must be y.

Suppose now that y(0)> y. We must consider separately when the initial conditions lie in Σ1 and Σ2. If we
have a solution with initial conditions in Σ2, the solution must stop in finite time as x2(t) converges to 0 and
x1(t) approaches a negative limit, possibly −∞. If we have a solution with initial conditions in Σ1, we have
shown in Case (a), that the solution crosses into Σ2.

Case (c). Assume that y1 and y2 are distinct solutions to (5.15). Then, we may write

∂

∂ t
y(t) =−2n+1− p

2x2(t)
(y(t)− y1)(y(t)− y2) .
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The two lines x2(t) = y1x1(t) and x2(t) = y2x1(t) are invariant and contained in Σ1. We now distinguish three
different initial conditions (see Figure 3):

(i) y(0)< y1,

(ii) y1 < y(0)< y2, and

(iii) y2 < y(0).

x2

x1

Σ1
x2(t) = f x1(t)

y

Σ2y > y0

y > y0

y > y0

FIGURE 2. Quadrant 3 when there is
exactly one positive root of (5.15)

x2

x1

Σ1x2(t) = f x1(t)

y1

y2

Σ2y2 > y0

y2 > y0

y2 > y0 > y1

y1 > y0

FIGURE 3. Quadrant 3 when there
are two distinct positive roots of
(5.15)

Case (i): Here y(0) is contained in Σ1 and y(t) is increasing in t. Indeed, we have

∂

∂ t
x1(t)> 2−2p− (n+1− p)y1

2, and

∂

∂ t
x2(t)>−2n.

As such, there exists a solution for all time and we see y(t)→ y1 as t→ ∞.

Case (ii): Again, y(0) ∈ Σ1 and we have the bound y1 < y(t)< y2 for all t such that a solution exists. Hence,
y(t) remains in Σ1, where it is decreasing in t. We have the estimates

∂

∂ t
x1(t)> 2−2p− (n+1− p)y2

2, and

∂

∂ t
x2(t)>−2n.

Hence, as t→ ∞, y(t)→ y1. Consider the reparametrisation τ =−t. We find that x1(τ),x2(τ) and y(τ) are
increasing in τ . In fact,

∂

∂τ
x2(τ)> 2n− p−1

2
y1 > 0
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implies that there exists −∞ < T < 0 such that x2(τ)→ 0 as τ → T . As y1 < y(τ) < y2 for all τ , we see
x1(τ)→ 0 as τ → T too.

Case (iii): For y(t) such that (x1(0),x2(0)) ∈ Σ1, we have already shown that the solution must cross L. It
suffices then to consider (x1(0),x2(0)) ∈ Σ2. Since this is an invariant set, y(t) ∈ Σ2 for all t such that a
solution exists. As in Case (i), the solution stops in finite time when x2(t)→ 0, and x1(t) tends to a negative
limit (possibly −∞). We have thus proven the following result.

THEOREM 5.23. Let G/H be the homogeneous superspace SOSp(2|2n)/U(1|p−1)×Sp(2(n+1− p)) and
consider a homogeneous Riemannian metric of the form (5.17) on G/H. If x1(0)< 0 and x2(0)< 0, then
there exists a unique solution to the homogeneous super Ricci flow. We see different behaviour depending on
the number of roots of (5.15).

(i) If (5.15) has no roots, then solutions exist on a maximal interval [0,T ) and, as t→ T , x2(t)→ 0 while
x1 approaches a negative limit (possibly −∞).

(ii) If there is a unique root y of (5.15), then we see one of two possible behaviours:
(a) if x1(0)

x2(0)
< y, then x1(t)

x2(t)
as t→ ∞;

(b) if x1(0)
x2(0)

> y, then there exists a finite extinction time T such that, as t→ T , x2(t)→ 0 and x1(t)
approaches a negative limit.

(iii) If there are two roots, y1 and y2, to (5.15), then we see one of three possible behaviours:
(a) if x1(0)

x2(0)
< y1 < y2, then x1(t)

x2(t)
→ y1 as t→ ∞;

(b) if y1 <
x1(0)
x2(0)

< y2, then there exists a finite time T such that x1(t)
x2(t)
→ y1 as t→ ∞, and x1(t)

x2(t)
→ y2

as t→−T ;
(c) if y1 < y2 < x1(0)

x2(0)
, then there exists a finite time T such that, as t → T , x2(t)→ 0 and x1(t)

approaches a negative limit that is possibly −∞.

5.7. Future directions

In this section, we discuss various questions and potential extensions stemming from the work presented in
previous chapters. Perhaps the most natural problem to consider arises from our results in Theorem 5.19:

PROBLEM 1. Renormalising the Ricci flow on homogeneous superspaces.

Theorem 5.19 describes the existence of singularities in the Ricci flow for the homogeneous superspace
G/H = SOSp(2|2n)/U(1|p− 1)×Sp(2(n+ 1− p)). A natural next step is to consider renormalising the
Ricci flow in an attempt to remove the singularities. Buzano [Buz14] remarks that in the classical case,
renormalisation by volume only removes singularities when both x1(t) and x2(t) converge to 0. In these cases,
the flow takes g to an Einstein metric. We suspect a similar conclusion in the super setting.

Following this, a natural goal is the resolution of Conjecture A. Moreover, we could consider when H is
maximal in G. The overarching goal is to develop a general theory of the long time behaviour of the Ricci
flow on homogeneous superspaces.

PROBLEM 2. What is the long time behaviour of the Ricci flow of G-invariant metrics on compact homoge-
neous superspaces with more than two irreducible isotropy summands?
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APPENDIX A

Mathematica code for the computation in Proposition 5.7:

s = 2; " Number of summands "
f[ OrderlessPatternSequence [a_ , b_ , c_]] = g[a, b, c]; " Symmetry of [ijk]"
d = Table [ Symbol ["d" <> ToString@i ], {i, s}]; " Creates an array of variables di"
x = Table [ Symbol ["x" <> ToString@i ], {i, s}]; " Creates an array of variables xi"
r = Table [
b/(2 Part[x, i]) +
1/(2 Part[d, i]) Sum[
Part[x, k]/(Part[x, j] Part[x, i]) f[i, j, k], {j, 1, s}, {k, 1,

s}] -
1/(4 Part[d, i]) Sum[
Part[x, i]/(Part[x, k] Part[x, j]) f[i, j, k], {j, 1, s}, {k, 1,

s}], {i, 1, s}]; " Creates an array of the Ricci coefficients "
S = Sum[Part[r, i]*Part[d, i], {i, 1, s}]; " Scalar curvature expression "
dx = Table[-2 Part[r, i]*Part[x, i] +
2/(Sum[Part[d, i], {i, 1, s}])*S*Part[x, i], {i, 1, s}]; " Normalised Ricci flow"
Formula =
2 (Sum[Part[r, i]^2*Part[d, i], {i, 1, s}] -
1/(Sum[Part[d, i], {i, 1, s}]) S^2); " Proposed formula for the evolution of S"
dS = Sum[-1/2 b Part[d, m] Part[dx , m]/Part[x, m]^2 +
Part[dx , m]/2 (
Sum[(Sum[(-Part[x, k]/(Part[x, m]^2 Part[x, i]) f[i, m, k])*
Boole[k != m] , {k, 1, s}] +
Sum[(1/(Part[x, i] Part[x, j]) f[i, j, m])*
Boole[j != m], {j, 1, s}])* Boole[i != m], {i, 1, s}] +
Sum[(Sum[(-Part[x, k]/(Part[x, j] Part[x, m]^2) f[m, j, k])*
Boole[k != m], {k, 1, s}])* Boole[j != m], {j, 1, s}] +
Sum[(-2 Part[x, k]/Part[x, m]^3 f[m, m, k])*Boole [k != m], {k,

1, s}] - 1/Part[x, m]^2 f[m, m, m]) -
Part[dx , m]/
4 (Sum[(Sum[(-Part[x, i]/(Part[x, k] Part[x, m]^2) f[i, m, k])*
Boole[k != m], {k, 1, s}] +
Sum[(-Part[x, i]/(Part[x, j] Part[x, m]^2) f[i, j, m])*
Boole[j != m], {j, 1, s}] -
2 Part[x, i]/Part[x, m]^3 f[i, m, m])*Boole [i != m], {i, 1,

s}] +
Sum[(Sum[(1/(Part[x, j] Part[x, k]) f[m, j, k])*
Boole[k != m], {k, 1, s}])* Boole[j != m], {j, 1, s}] -
1/Part[x, m]^2 f[m, m, m]), {m, 1, s}]; "Time derivative of S"
FullSimplify [ Formula - dS]
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